An adaptive discrete-time controller is developed for a class of practical plants when the mathematical model is unknown and the sampling time is nonconstant or unfixed. The data-driven model is established by the set of plant's input–output data under the pseudo-partial derivative (PPD) which represents the change of output with respect to the change of control effort. The multi-input fuzzy rule emulated network (MiFREN) is utilized to estimate PPD with an online-learning phase to tune all adjustable parameters of MiFREN with the convergence analysis. The proposed control law is developed by the discrete-time sliding mode control (DSMC), and the time-varying band is established according to the unfixed sampling time and unknown boundaries of disturbances and uncertainties. The prototype of direct current-motor current control with uncontrolled-sampling time is constructed to validate the performance of the proposed controller.

References

1.
Abdennabi
,
N.
,
Ltaief
,
M.
, and
Nouri
,
A. S.
,
2014
, “
Discrete Sliding Mode Control for Time-Varying Delay Systems: A Multi-Delay Approach
,”
J. Modell., Identif. Control
,
22
(
4
), pp.
366
374
.
2.
Khandekar
,
A. A.
,
Malwatkar
,
G. M.
, and
Patre
,
B. M.
,
2013
, “
Discrete Sliding Mode Control for Robust Tracking of Higher Order Delay Time Systems With Experimental Application
,”
ISA Trans.
,
52
(
1
), pp.
36
44
.
3.
Peric
,
S.
,
Antic
,
D. S.
,
Milovanovic
,
M. B.
,
Mitic
,
D. B.
,
Milojkovic
,
M. T.
, and
Nikolic
,
S. S.
,
2016
, “
Quasi-Sliding Mode Control With Orthogonal Endocrine Neural Network-Based Estimator Applied in Anti-Lock Braking System
,”
IEEE/ASME Trans. Mechatronics
,
21
(
2
), pp.
754
764
.
4.
Zong
,
Q.
,
Wang
,
J.
,
Tian
,
B.
, and
Tao
,
Y.
,
2013
, “
Quasi-Continuous High-Order Sliding Mode Controller and Observer Design for Flexible Hypersonic Vehicle
,”
Aerosp. Sci. Technol.
,
27
(
1
), pp.
127
137
.
5.
Zhang
,
Y.
,
Li
,
R.
,
Xue
,
T.
,
Liu
,
Z.
, and
Yao
,
Z.
,
2016
, “
An Analysis of the Stability and Chattering Reduction of High-Order Sliding Mode Tracking Control for a Hypersonic Vehicle
,”
Inf. Sci.
,
348
(
20
), pp.
25
48
.
6.
Ma
,
H.
,
Wu
,
J.
, and
Xiong
,
Z.
,
2016
, “
Discrete-Time Sliding-Mode Control With Improved Quasi-Sliding-Mode Domain
,”
IEEE Trans. Ind. Electron.
,
63
(
10
), pp.
6292
6304
.
7.
Bartoszewicz
,
A.
, and
Latosinski
,
P.
,
2016
, “
Reaching Law Based Discrete Time Sliding Mode Inventory Management Strategy
,”
IEEE Access
,
4
, pp.
10051
10058
.
8.
Zhou
,
H.
,
Lao
,
L.
,
Chen
,
Y.
, and
Yang
,
H.
,
2017
, “
Discrete-Time Sliding Mode Control With an Input Filter for an Electro-Hydraulic Actuator
,”
IET Control Theory Appl.
,
11
(
9
), pp.
1333
1340
.
9.
Zina
,
E.
,
Khadija
,
D.
, and
Said
,
N. A.
,
2017
, “
Stability Analysis of Discrete Integral Sliding Mode Control for Input Output Model
,”
ASME J. Dyn. Syst. Meas. Control
,
139
(
3
), p.
034501
.
10.
Sharma
,
N. K.
, and
Janardhanan
,
S.
,
2017
, “
Discrete Higher Order Sliding Mode: Concept to Validation
,”
IET Control Theory Appl.
,
11
(
8
), pp.
1098
1103
.
11.
Chen
,
K. Y.
,
2018
, “
Model Following Adaptive Sliding Mode Tracking Control Based on a Disturbance Observer for the Mechanical Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
140
(
5
), p.
051012
.
12.
Hou
,
Z.
,
Chi
,
R.
, and
Gao
,
H.
,
2017
, “
An Overview of Dynamic-Linearization-Based Data-Driven Control and Applications
,”
IEEE Trans. Ind. Electron.
,
64
(
5
), pp.
4076
4090
.
13.
Hou
,
Z. S.
, and
Wang
,
Z.
,
2013
, “
From Model-Based Control to Data-Driven Control: Survey, Classification and Perspective
,”
Inf. Sci.
,
235
, pp.
3
35
.
14.
Treesatayapun
,
C.
,
2016
, “
Discrete-Time Adaptive Controller Based on Estimated Pseudopartial Derivative and Reaching Sliding Condition
,”
ASME J. Dyn. Syst. Meas. Control
,
138
(
10
), p.
101002
.
15.
Zhang
,
H.
,
Zhou
,
J.
,
Sun
,
Q.
,
Guerrero
,
J. M.
, and
Ma
,
D.
,
2017
, “
Data-Driven Model-Free Adaptive Control for a Class of MIMO Nonlinear Discrete-Time Systems
,”
IEEE Trans. Smart Grid.
,
8
(
2
), pp.
557
571
.
16.
Weng
,
Y.
, and
Gao
,
X.
,
2017
, “
Data-Driven Robust Output Tracking Control for Gas Collector Pressure System of Coke Ovens
,”
IEEE Trans. Ind. Electron.
,
64
(
5
), pp.
4187
4198
.
17.
Yang
,
C.
,
Jiang
,
Y.
,
Li
,
Z.
,
He
,
W.
, and
Su
,
C. Y.
, Jun.
2017
, “
Neural Control of Bimanual Robots With Guaranteed Global Stability and Motion Precision
,”
IEEE Trans. Ind. Informat.
,
13
(
3
), pp.
1162
1171
.
18.
Treesatayapun
,
C.
,
2014
, “
Adaptive Control Based on IF–THEN Rules for Grasping Force Regulation With Unknown Contact Mechanism
,”
Rob. Comput.-Integr. Manuf.
,
30
(
1
), pp.
11
18
.
19.
Tang
,
Y.
,
Wang
,
Y.
,
Han
,
M.
, and
Lian
,
Q.
,
2016
, “
Adaptive Fuzzy Fractional-Order Sliding Mode Controller Design for Antilock Braking Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
138
(
4
), p.
041008
.
20.
Li
,
H.
,
Wang
,
J.
,
Wu
,
L.
,
Lam
,
H.
, and
Gao
,
Y.
,
2017
, “
Optimal Guaranteed Cost Sliding-Mode Control of Interval Type-2 Fuzzy Time-Delay Systems
,”
IEEE Trans. Fuzzy Syst.
,
26
(1), pp. 246–257.
21.
Wang
,
T.
, and
Fei
,
J.
,
2016
, “
Adaptive Neural Control of Active Power Filter Using Fuzzy Sliding Mode Controller
,”
IEEE Access
,
4
, pp.
6816
6822
.
22.
Qu
,
Q.
,
Zhang
,
H.
,
Yu
,
R.
, and
Liu
,
Y.
,
2018
, “
Neural Network-Based H∞ Sliding Mode Control for Nonlinear Systems With Actuator Faults and Unmatched Disturbances
,”
Neurocomputing
,
275
, pp.
2009
2018
.
23.
Zhang
,
W.
, and
Yu
,
L.
,
2010
, “
Stabilization of Sampled-Data Control Systems With Control Inputs Missing
,”
IEEE Trans. Autom. Control
,
55
(2), pp.
447
452
.
24.
Feng
,
L.
, and
Song
,
Y. D.
,
2011
, “
Stability Condition for Sampled Data Based Control of Linear Continuous Switched Systems
,”
Syst. Control Lett.
,
60
(
10
), pp.
787
797
.
25.
Ge
,
X.
,
Han
,
Q. L.
, and
Jiang
,
X.
,
2014
, “
Sampled-Data H∞ Filtering of Takagi Sugeno Fuzzy Systems With Interval Time-Varying Delays
,”
J. Franklin Inst.
,
351
(
5
), pp.
2515
2542
.
26.
Du
,
Z.
,
Zhang
,
Q.
, and
Liu
,
L.
,
2011
, “
New Delay-Dependent Robust Stability of Discrete Singular Systems With Time-Varying Delay
,”
Asian J. Control
,
13
(
1
), pp.
136
147
.
27.
Liu
,
Z.
,
Yu
,
X.
,
Guan
,
Z.
,
Hu
,
B.
, and
Li
,
C.
,
2017
, “
Pulse-Modulated Intermittent Control in Consensus of Multi-Agent Systems
,”
IEEE Trans. Syst., Man, Cybern.: Syst.
,
47
(
5
), pp.
783
793
.
28.
Emhemed
,
A. A.
, and
Mamat
,
R. B.
,
2012
, “
Modelling and Simulation for Industrial DC Motor Using Intelligent Control
,”
Procedia Eng.
,
41
, pp.
420
425
.
29.
Gowthaman
,
E.
,
Vinodhini
,
V.
,
Hussain
,
M. Y.
,
Dhinakaran
,
S. K.
, and
Sabarinathan
,
T.
,
2017
, “
Speed Control of Permanent Magnet Brushless DC Motor Using Hybrid Fuzzy Proportional plus Integral plus Derivative Controller
,”
Energy Procedia
,
117
, pp.
1101
1108
.
30.
Yanzhao
,
H.
,
Shiqiang
,
Z.
, and
Jiancheng
,
F.
,
2017
, “
Start-Up Current Adaptive Control for Sensorless High-Speed Brushless DC Motors Based on Inverse System Method and Internal Mode Controller
,”
Chin. J. Aeronaut.
,
30
(
1
), pp.
358
367
.
31.
Ramirez
,
H. S.
,
Orduna
,
M. A.
, and
Bustanmante
,
E. W.
,
2017
, “
Sliding Mode Tracking Controller for a Non-Linear Single Link-DC Motor System: An Input Output Approach
,”
IFAC PaperOnLine
,
50
(
1
), pp.
11619
11624
.
32.
Lu
,
H.
,
Li
,
Y.
,
Mu
,
S.
,
Wang
,
D.
,
Kim
,
H.
, and
Serikawa
,
S.
,
2017
, “
Motor Anomaly Detection for Unmanned Aerial Vehicles Using Reinforcement Learning
,”
IEEE Internet Things J.
, epub.https://ieeexplore.ieee.org/search/searchresult.jsp?newsearch=true&queryText=Motor%20Anomaly%20Detection%20for%20Unmanned%20Aerial%20Vehicles%20Using%20Reinforcement
33.
Treesatayapun
,
C.
, and
Uatrongjit
,
S.
,
2005
, “
Adaptive Controller With Fuzzy Rules Emulated Structure and Its Applications
,”
Eng. Appl. Artif. Intell.
,
18
(
5
), pp.
603
615
.
You do not currently have access to this content.