This work combines the kinematics estimate of human standing with a hybrid identification algorithm to identify a set of ankle dynamics mechanical parameters. We used the hold and release (H&R) experimental paradigm to model a set of recoverable falls on a population of unimpaired adults. Body kinematics was acquired with a microsoft kinect (mk) version 2 after benchmarking its position accuracy to a camera-based vision system (CVS). The system identification algorithm, combining an extended Kalman filter (EKF) and a genetic algorithm (GA), allowed to identify the effect of tendon and muscle stiffness at the ankle joint, separately. This work highlights that, when associated to soft-computing techniques, affordable tracking devices developed for the gaming industry can be used for the reliable assessment of neuromechanical parameters in clinical settings.
Skip Nav Destination
Article navigation
September 2016
Research-Article
Analysis of Recoverable Falls Via microsoft kinect: Identification of Third-Order Ankle Dynamics
Mauricio E. Segura,
Mauricio E. Segura
Facultad de Ingeniería,
Universidad Autónoma de San Luis Potosí,
San Luis Potosí 78290, México
e-mail: mauricio.segura@uaslp.mx
Universidad Autónoma de San Luis Potosí,
San Luis Potosí 78290, México
e-mail: mauricio.segura@uaslp.mx
Search for other works by this author on:
Enrique Coronado,
Enrique Coronado
Facultad de Ingeniería,
Universidad Autónoma de San Luis Potosí,
San Luis Potosí 78290, México
e-mail: luis.coronado@uaslp.mx
Universidad Autónoma de San Luis Potosí,
San Luis Potosí 78290, México
e-mail: luis.coronado@uaslp.mx
Search for other works by this author on:
Mauro Maya,
Mauro Maya
Facultad de Ingeniería,
Universidad Autónoma de San Luis Potosí,
San Luis Potosí 78290, México
e-mail: mauro.maya@uaslp.mx
Universidad Autónoma de San Luis Potosí,
San Luis Potosí 78290, México
e-mail: mauro.maya@uaslp.mx
Search for other works by this author on:
Antonio Cardenas,
Antonio Cardenas
Facultad de Ingeniería,
Universidad Autónoma de San Luis Potosí,
San Luis Potosí 78290, México
e-mail: antonio.cardenas@uaslp.mx
Universidad Autónoma de San Luis Potosí,
San Luis Potosí 78290, México
e-mail: antonio.cardenas@uaslp.mx
Search for other works by this author on:
Davide Piovesan
Davide Piovesan
Search for other works by this author on:
Mauricio E. Segura
Facultad de Ingeniería,
Universidad Autónoma de San Luis Potosí,
San Luis Potosí 78290, México
e-mail: mauricio.segura@uaslp.mx
Universidad Autónoma de San Luis Potosí,
San Luis Potosí 78290, México
e-mail: mauricio.segura@uaslp.mx
Enrique Coronado
Facultad de Ingeniería,
Universidad Autónoma de San Luis Potosí,
San Luis Potosí 78290, México
e-mail: luis.coronado@uaslp.mx
Universidad Autónoma de San Luis Potosí,
San Luis Potosí 78290, México
e-mail: luis.coronado@uaslp.mx
Mauro Maya
Facultad de Ingeniería,
Universidad Autónoma de San Luis Potosí,
San Luis Potosí 78290, México
e-mail: mauro.maya@uaslp.mx
Universidad Autónoma de San Luis Potosí,
San Luis Potosí 78290, México
e-mail: mauro.maya@uaslp.mx
Antonio Cardenas
Facultad de Ingeniería,
Universidad Autónoma de San Luis Potosí,
San Luis Potosí 78290, México
e-mail: antonio.cardenas@uaslp.mx
Universidad Autónoma de San Luis Potosí,
San Luis Potosí 78290, México
e-mail: antonio.cardenas@uaslp.mx
Davide Piovesan
1Corresponding author.
Contributed by the Dynamic Systems Division of ASME for publication in the JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL. Manuscript received October 5, 2015; final manuscript received February 23, 2016; published online June 2, 2016. Assoc. Editor: Davide Spinello.
J. Dyn. Sys., Meas., Control. Sep 2016, 138(9): 091006 (10 pages)
Published Online: June 2, 2016
Article history
Received:
October 5, 2015
Revised:
February 23, 2016
Citation
Segura, M. E., Coronado, E., Maya, M., Cardenas, A., and Piovesan, D. (June 2, 2016). "Analysis of Recoverable Falls Via microsoft kinect: Identification of Third-Order Ankle Dynamics." ASME. J. Dyn. Sys., Meas., Control. September 2016; 138(9): 091006. https://doi.org/10.1115/1.4032878
Download citation file:
Get Email Alerts
Cited By
Control-Oriented Modeling of a Solid Oxide Fuel Cell Affected by Redox Cycling Using a Novel Deep Learning Approach
J. Dyn. Sys., Meas., Control (March 2025)
Robust Control of Exo-Abs, a Wearable Platform for Ubiquitous Respiratory Assistance
J. Dyn. Sys., Meas., Control (March 2025)
Resilient Self-Triggered Model Predictive Control of Cyber-Physical Systems Under Two-Channel False Data Injection Attacks
J. Dyn. Sys., Meas., Control (March 2025)
Special Issue on Data-Driven Modeling and Control of Dynamical Systems
J. Dyn. Sys., Meas., Control
Related Articles
Modified Levenberg–Marquardt Algorithm for Backpropagation Neural Network Training in Dynamic Model Identification of Mechanical Systems
J. Dyn. Sys., Meas., Control (March,2017)
Efficient Identification of Naval High-Speed Craft Shock Mitigation Seat Modal Parameters From Drop-Test Data
J. Dyn. Sys., Meas., Control (March,2017)
Estimation of Dynamical Thermoacoustic Modes Using an Output Only Observer Kalman Filter-Based Identification Algorithm
J. Eng. Gas Turbines Power (May,2023)
Electrical Contact Resistance Estimation With Application to Electric Vehicle Charging Cable
J. Dyn. Sys., Meas., Control (April,2018)
Related Proceedings Papers
Related Chapters
Ultra High-Speed Microbridge Chaos Domain
Intelligent Engineering Systems Through Artificial Neural Networks, Volume 17
System Constraints and Virtual Displacement
Dynamics of Particles and Rigid Bodies: A Self-Learning Approach
Measuring Graph Similarity Using Node Indexing and Message Passing
International Conference on Computer Technology and Development, 3rd (ICCTD 2011)