This paper introduces a robust distributed model predictive control (DMPC) strategy for constrained continuous-time nonlinear systems coupled through their cost functions. In the proposed technique, all the subsystems receive the assumed control trajectories of their neighbors and compute their controls by optimizing local cost functions with coupling terms. Provided that the initial state is feasible and the disturbances are bounded, a two-layer invariant sets-based controller design ensures robustness while appropriate tuning of the design parameters guarantees recursive feasibility. This paper first derives sufficient conditions for the convergence of all the subsystem states to a robust positive invariant set. Then, it exploits the κδ controllability set to propose a less conservative robust model predictive control (MPC) strategy that permits the adoption of a shorter prediction horizon and tolerates larger disturbances. A numerical example illustrates that the designed algorithm leads to stronger cooperation among subsystems compared to an existing robust DMPC technique.

References

1.
Mayne
,
D. Q.
,
Rawlings
,
J. B.
,
Rao
,
C. V.
, and
Scokaert
,
P. O. M.
,
2000
, “
An Overview of Nonlinear Model Predictive Control Applications
,”
Automatica
,
36
(
6
), pp.
789
814
.
2.
Li
,
H.
,
Shi
,
Y.
, and
Yan
,
W.
,
2016
, “
Distributed Receding Horizon Control of Constrained Nonlinear Vehicle Formations With Guaranteed γ-Gain Stability
,”
Automatica
, 68, pp. 148–154
3.
Li
,
H.
, and
Yan
,
W.
,
2015
, “
Receding Horizon Control Based Consensus Scheme in General Linear Multi-Agent Systems
,”
Automatica
,
56
(
4
), pp.
12
18
.
4.
Liu
,
M.
,
Shi
,
Y.
, and
Liu
,
X.
,
2016
, “
Distributed MPC of Aggregated Heterogeneous Thermostatically Controlled Loads in Smart Grid
,”
IEEE Trans. Ind. Electron.
,
63
(
2
), pp.
1120
1129
.
5.
Scattolini
,
R.
,
2009
, “
Architecture for Distributed and Hierarchical Model Predictive Control
,”
J. Process Control
,
19
(
5
), pp.
723
731
.
6.
Christofides
,
P. D.
,
Scattolini
,
R.
,
de la Peña
,
D. M.
, and
Liu
,
J.
,
2013
, “
Distributed Model Predictive Control: A Tutorial Review and Future Research Directions
,”
Comput. Chem. Eng.
,
51
(
5
), pp.
21
41
.
7.
Dunbar
,
W. B.
,
2007
, “
Distributed Receding Horizon Control of Dynamically Coupled Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
52
(
7
), pp.
1249
1263
.
8.
Stewart
,
B. T.
,
Wright
,
S. J.
, and
Rawlings
,
J. B.
,
2011
, “
Cooperative Distributed Model Predictive Control for Nonlinear Systems
,”
J. Process Control
,
21
(
5
), pp.
698
704
.
9.
Farina
,
M.
, and
Scattolini
,
R.
,
2012
, “
Distributed Predictive Control: A Non-Cooperative Algorithm With Neighbor-to-Neighbor Communication for Linear Systems
,”
Automatica
,
48
(
6
), pp.
1088
1096
.
10.
Dunbar
,
W. M.
, and
Murray
,
R. M.
,
2006
, “
Distributed Receding Horizon Control for Multi-Vehicle Formation Stabilization
,”
Automatica
,
42
(
4
), pp.
549
558
.
11.
Liu
,
J.
,
Chen
,
X.
,
de la Peña
,
D. M.
, and
Christofides
,
P. D.
,
2012
, “
Iterative Distributed Model Predictive Control of Nonlinear Systems: Handling Asynchronous, Delayed Measurements
,”
IEEE Trans. Autom. Control
,
57
(
2
), pp.
528
534
.
12.
Richards
,
A.
, and
How
,
J.
,
2007
, “
Robust Distributed Model Predictive Control
,”
Int. J. Control
,
80
(
9
), pp.
1517
1531
.
13.
Trodden
,
P.
, and
Richards
,
A.
,
2010
, “
Distributed Model Predictive Control of Linear Systems With Persistent Disturbances
,”
Int. J. Control
,
83
(
8
), pp.
1653
1663
.
14.
Trodden
,
P.
, and
Richards
,
A.
,
2013
, “
Cooperative Distributed MPC of Linear Systems With Coupled Constraints
,”
Automatica
,
49
(
2
), pp.
479
487
.
15.
Dunbar
,
W. B.
,
2012
, “
Distributed Receding Horizon Control of Vehicle Platoon Stability and String Stability
,”
IEEE Trans. Autom. Control
,
57
(
3
), pp.
620
633
.
16.
Keviczky
,
T.
,
Borrelli
,
F.
, and
Balas
,
G. J.
,
2006
, “
Decentralized Receding Horizon Control for Large Scale Dynamically Decoupled Systems
,”
Automatica
,
42
(
12
), pp.
2105
2115
.
17.
Ranco
,
E.
, and
Magni
,
L.
,
2008
, “
Cooperative Constrained Control of Distributed Agents With Nonlinear Dynamics and Delayed Information Exchange: A Stabilizing Receding Horizon Approach
,”
IEEE Trans. Autom. Control
,
53
(
1
), pp.
324
338
.
18.
Wang
,
C.
, and
Ong
,
C.
,
2010
, “
Distributed Decentralized Model Predictive Control of Dynamically Decoupled Systems With Coupled Cost
,”
Automatica
,
46
(
12
), pp.
2053
2058
.
19.
Li
,
H.
, and
Shi
,
Y.
,
2014
, “
Robust Distributed Model Predictive Control of Constrained Continuous-Time Nonlinear Systems: A Robustness Constraint Approach
,”
IEEE Trans. Autom. Control
,
59
(
6
), pp.
1673
1678
.
20.
Liu
,
X.
,
Shi
,
Y.
, and
Constantinescu
,
D.
,
2014
, “
Robust Distributed Model Predictive Control of Constrained Continuous-Time Nonlinear Systems Using Two-Layer Invariant Set
,”
American Control Conference
,
Portland, OR
, pp.
5602
5607
.
21.
Chen
,
H.
, and
Allgöwer
,
F.
,
1998
, “
A Quasi-Infinite Horizon Nonlinear Model Predictive Control Scheme With Guaranteed Stability
,”
Automatica
,
34
(
10
), pp.
1205
1217
.
22.
Liu
,
X.
,
Shi
,
Y.
, and
Constantinescu
,
D.
,
2014
, “
Distributed Model Predictive Control of Constrained Coupled Nonlinear Systems
,”
Syst. Control Lett.
,
74
(
12
), pp.
41
49
.
23.
Liu
,
X.
,
Constantinescu
,
D.
, and
Shi
,
Y.
,
2015
, “
Robust Model Predictive Control of Constrained Nonlinear Systems—Adopting the Non-Squared Integrand Objective Function
,”
IET Control Theory Appl.
,
9
(
5
), pp.
649
658
.
24.
Michalska
,
H.
, and
Mayne
,
D. Q.
,
1993
, “
Robust Receding Horizon Control of Constrained Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
38
(
11
), pp.
1623
1633
.
25.
Liu
,
X.
,
Constantinescu
,
D.
, and
Shi
,
Y.
,
2014
, “
Multistage Suboptimal Model Predictive Control With Improved Computational Efficiency
,”
ASME J. Dyn. Syst., Meas., Control
,
136
(
3
), p.
031026
.
26.
Hammer
,
J.
,
2014
, “
State Feedback Control of Nonlinear Systems: A Simple Approach
,”
Int. J. Control
,
87
(
1
), pp.
143
160
.
27.
Pin
,
G.
, and
Parisini
,
T.
,
2014
, “
On the Robustness of Nominal Nonlinear Minimum-Time Control and Extension to Non-Robustly Controllable Target Sets
,”
IEEE Trans. Autom. Control
,
59
(
4
), pp.
863
875
.
28.
Raković
,
S. V.
,
Kerrigan
,
E.
,
Mayne
,
D. Q.
, and
Lygeros
,
J.
,
2006
, “
Reachability Analysis of Discrete-Time Systems With Disturbances
,”
IEEE Trans. Autom. Control
,
51
(
4
), pp.
546
561
.
29.
Bravo
,
J. M.
,
Limón
,
D.
,
Alamo
,
T.
, and
Camacho
,
E. F.
,
2005
, “
On the Computation of Invariant Sets for Constrained Nonlinear Systems: An Interval Arithmetic Approach
,”
Automatica
,
41
(
9
), pp.
1583
1589
.
30.
Liu
,
M.
,
Shi
,
Y.
, and
Gao
,
H.
,
2016
, “
Aggregation and Charging Control of PHEVs in Smart Grid: A Cyber-Physical Perspective
,”
Proceedings of the
IEEE
(online).
You do not currently have access to this content.