Abstract

A new set of linearized differential equations governing relative motion of inner-formation satellite system (IFSS) is derived with the effects of J2 as well as atmospheric drag. The IFSS consists of the “inner satellite” and the “outer satellite,” this special configuration formation endows its some advantages to map the gravity field of earth. For long-term IFSS in elliptical orbit, the high-fidelity set of linearized equations is more convenient than the nonlinear equations for designing formation control system or navigation algorithms. In addition, to avoid the collision between the inner satellite and the outer satellite, the minimum sliding mode error feedback control (MSMEFC) is adopted to perform a real-time control on the outer satellite in the presence of uncertain perturbations from the system and space. The robustness and steady-state error of MSMEFC are also discussed to show its theoretical advantages than traditional sliding mode control (SMC). Finally, numerical simulations are performed to check the fidelity of the proposed equations. Moreover, the efficacy of the MSMEFC is performed to control the IFSS with high precision.

References

1.
Neeck
,
S. P.
,
Magner
,
T. J.
, and
Paules
,
G. E.
,
2005
, “
NASA's Small Satellite Missions for Earth Observation
,”
Acta Astronaut.
,
56
(
1–2
), pp.
187
192
.
2.
Folta
,
D.
,
Bristow
,
J.
,
Hawkins
,
A.
, and
Dell
,
G.
,
2002
, “
NASA's Autonomous Formation Flying Technology Demonstration, Earth Observing-1
,”
First International Symposium on Formation Flying Missions and Technologies, Center National d'Etudes Spatiales
, Paris, pp.
29
30
.
3.
Cabeza
,
I.
, and
Maetinez
,
A.
,
2002
, “
Smart-2: An ESA Mission to Demonstrate the Key Technologies for Formation Flying and Drag-Free Control
,”
1st International Symposium on Formation Flying Missions and Technologies, Center National d'Etudes Spatiales
, Paris, pp.
29
30
.
4.
Alfriend
,
K. T.
,
Vadali
,
S. R.
,
Gurfil
,
P.
,
How
,
J. P.
, and
Breger
,
L. S.
,
2010
,
Spacecraft Formation Flying: Dynamics, Control and Navigation
,
Elsevier
,
Oxford, UK
.
5.
Kristiansen
,
R.
, and
Nicklasson
,
P. J.
,
2009
, “
Spacecraft Formation Flying: A Review and New Results on State Feedback Control
,”
Acta Astronaut.
,
65
(
11
), pp.
1537
1552
.
6.
Bauer
,
F.
,
Bristow
,
J.
,
Carpenter
,
J.
,
Garrison
,
J.
,
Hartman
,
K.
,
Lee
,
T.
,
Long
,
A.
,
Kelbel
,
D.
,
Lu
,
V.
,
How
,
J.
,
Busse
,
F.
,
Axelrad
,
P.
, and
Moreau
,
M.
,
2001
, “
Enabling Spacecraft Formation Flying in Any Earth Orbit Through Spaceborne GPS and Enhanced Autonomy Technologies
,”
Space Technol.
,
20
(
4
), pp.
175
185
.
7.
Wei
,
C. Z.
,
Park
,
S. Y.
, and
Park
,
C.
,
2013
, “
Linearized Dynamics Model for Relative Motion Under a J2-Perturbed Elliptical Reference Orbit
,”
Int. J. Nonlinear Mech.
,
55
, pp.
55
69
.
8.
Cabeza
,
I.
, and
Maetinez
,
A.
,
2002
, “
Smart-2: An ESA Mission to Demonstrate the Key Technologies for Formation Flying and Drag-Free Control
,”
1st International Symposium on Formation Flying Missions and Technologies, Center National d'Etudes Spatiales
, Paris, pp.
29
30
.
9.
Neeck
,
S. P.
,
Magner
,
T. J.
, and
Paules
,
G. E.
,
2005
, “
NASA's Small Satellite Missions for Earth Observation
,”
Acta Astronaut.
,
56
(
1–2
), pp.
187
192
.
10.
Kristiansen
,
R.
, and
Nicklasson
,
P. J.
,
2009
, “
Spacecraft Formation Flying: A Review and New Results on State Feedback Control
,”
Acta Astronaut.
,
65
(
11–12
), pp.
1537
1552
.
11.
Zhang
,
Y. L.
,
Zeng
,
G. Q.
,
Wang
,
Z. K.
, and
Li
,
L.
,
2008
,
Theory and Application of Distributed Satellite
,
Science Press
,
Beijing,
(in Chinese).
12.
Lange
,
B.
,
1964
, “
The Drag-Free Satellite
,”
AIAA J.
,
2
(
9
), pp.
1590
1606
.
13.
Wang
,
Z. K.
, and
Zhang
,
Y. L.
,
2008
, “
A Novel Concept of Satellite Gravity Field Measurement System Using Precision Formation Flying Technology
,”
3rd CSA-IAA Conference on Advanced Space Systems and Applications-Satellite Applications and Applied Satellites
, IEEE, New York, p. 58.
14.
Wang
,
Z. K.
, and
Zhang
,
Y. L.
,
2010
, “
Acquirement of Pure Gravity Orbit Using Precision Formation Flying Technology
,”
6th International Workshop on Satellite Constellation and Formation Flying
, Taipei, Taiwan, pp.
124
128
.
15.
Seeber
,
G.
,
2003
,
Satellite Geodesy
, 2nd ed.,
Walter de Gruyter
,
Berlin, NY
.
16.
Dang
,
Z. H.
, and
Zhang
,
Y. L.
,
2012
, “
Formation Control Using μ-synthesis for Inner-Formation Gravity Measurement Satellite System
,”
Adv. Space Res.
,
49
(
10
), pp.
1487
1505
.
17.
Dang
,
Z. H.
, and
Zhang
,
Y. L.
,
2011
, “
Relative Position and Attitude Estimation for Inner-Formation Gravity Measurement Satellite System
,”
Acta Astronaut.
,
69
, pp.
514
525
.
18.
Schweigart
,
S. A.
, and
Sedwick
,
R. J.
,
2002
, “
High-Fidelity Linearized J2 Model for Satellite Formation Flight
,”
J. Guid., Control Dyn.
,
25
(
6
), pp.
1073
1080
.
19.
Carter
,
T.
, and
Humi
,
M.
,
2002
, “
Rendezvous Equations in a Central-Force Field With Linear Drag
,”
J. Guid., Control Dyn.
,
25
(
1
), pp.
74
79
.
20.
Carter
,
T.
, and
Humi
,
M.
,
2002
, “
Clohessy–Wiltshire Equations Modified to Include Quadratic Drag
,”
J. Guid., Control Dyn.
,
25
(
6
), pp.
1595
1607
.
21.
Roberts
,
J. A.
, and
Roberts
,
P. C. E.
,
2004
, “
The Development of High Fidelity Linearized J2 Models for Satellite Formation Flying Control
,” American Astronautical Society, Cranfield University, Cranfield, UK, AAS Paper No. 04-162.
22.
Sengupta
,
P.
, and
Vadali
,
S. R.
,
2007
, “
Relative Motion and the Geometry of Formation in Keplerian Elliptic Orbits
,”
J. Guid., Control Dyn.
,
30
(
4
), pp.
953
964
.
23.
Mishne
,
D.
,
2004
, “
Formation Control of Satellites Subject to Drag Variations and J2 Perturbations
,”
J. Guid., Control Dyn.
,
27
(
4
), pp.
685
692
.
24.
Morgan
,
D.
, and
Chung
,
S.
,
2012
, “
Swarm-Keeping Strategies for Spacecraft under J2 and Atmospheric Drag Perturbations
,”
J. Guid., Control Dyn.
,
35
(
5
), pp.
1492
1505
.
25.
Schaub
,
H.
, and
Junkins
,
L.
,
2003
,
Analytical Mechanics of Space Systems
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
26.
Cao
,
L.
, and
Misra
,
A. K.
,
2015
, “
Linearized J2 and Atmospheric Drag Model for Satellite Relative Motion With Small Eccentricity
,”
Proc. Inst. Mech. Eng., Part G
,
229
(
4
), pp.
2718
2736
.
27.
Vallado
,
D. A.
,
2001
,
Fundamentals of Astrodynamics and Applications
, 3rd ed.,
Microcosm Press
,
Hawthorne, CA
.
28.
Cao
,
L.
,
Li
,
X. L.
,
Chen
,
X. Q.
, and
Zhao
,
Y.
,
2014
, “
Minimum Sliding Mode Error Feedback Control for Fault Tolerant Small Satellite Attitude Control
,”
Adv. Space Res.
,
53
(
2
), pp.
309
324
.
29.
Cao
,
L.
, and
Chen
,
X. Q.
,
2015
, “
Minimum Sliding Mode Error Feedback Control and Observer for Satellite Attitude Control and Determination
,”
Proc. Inst. Mech. Eng., Part G
,
229
(
12
), pp.
2242
2257
.
30.
Sabatini
,
M.
, and
Palmerini
,
G. B.
,
2008
, “
Linearized Formation-Flying Dynamics in a Perturbed Orbital Environment
,”
IEEE Aerospace Conference
.
You do not currently have access to this content.