This paper presents a new method for designing adaptive neuro-fuzzy inference systems (ANFIS). Improvements are made by introducing specially developed orthogonal functions into the very structure of ANFIS, specifically, into the layer that imitates Sugeno stile defuzzification. These functions are specially tailored for analysis and synthesis of dynamic systems and they also contain an adaptive measure of the variability of the systems operating in a real environment, which can be implemented inside the ANFIS as hormonal effect.

References

1.
Medsker
,
L. R.
,
1995
,
Hybrid Intelligent Systems
,
Kluwer Academic Publishers
,
Boston
.
2.
Negnevitsky
,
M.
,
2005
,
Artificial Intelligence: A Guide to Intelligent Systems
,
Addison-Wesley
,
Reading, MA
.
3.
Nauck
,
D.
,
Klawonn
,
F.
, and
Kruse
,
R.
,
1997
,
Foundations of Neuro-Fuzzy Systems
,
Wiley
,
New York
.
4.
Jang
,
J.-S. R.
,
1993
, “
ANFIS: Adaptive Network-Based Fuzzy Inference Systems
,”
IEEE Trans. Syst., Man Cybernet.
,
23
(
3
), pp.
665
685
.
5.
Antić
,
D.
,
Danković
,
B.
,
Nikolić
,
S.
,
Milojković
,
M.
, and
Jovanović
,
Z.
,
2012
, “
Approximation Based on Orthogonal and Almost Orthogonal Functions
,”
J. Franklin Inst.
,
349
(
1
), pp.
323
336
.
6.
Timmis
,
J.
,
Neal
,
M.
, and
Thorniley
,
J.
,
2009
, “
An Adaptive Neuro-Endocrine System for Robotic Systems
,” IEEE Workshop on Robotic Intelligence in Informationally Structured Space, Nashville, TN, pp.
129
136
.
7.
Chen
,
D.
,
Wang
,
J.
,
Zou
,
F.
,
Yuan
,
W.
, and
Hou
,
W.
,
2014
, “
Time Series Prediction With Improved Neuro-Endocrine Model
,”
Neural Comput. Appl.
,
24
(
6
), pp.
1465
1475
.
8.
Sauze
,
C.
, and
Neal
,
M.
,
2013
, “
Artificial Endocrine Controller for Power Management in Robotic Systems
,”
IEEE Trans. Neural Networks Learn. Syst.
,
24
(
12
), pp.
1973
1985
.
9.
Danković
,
B.
,
Nikolić
,
S.
,
Milojković
,
M.
, and
Jovanović
,
Z.
,
2009
, “
A Class of Almost Orthogonal Filters
,”
J. Circuits, Syst. Comput.
,
18
(
5
), pp.
923
931
.
10.
Milojković
,
M.
,
Nikolić
,
S.
,
Danković
,
B.
,
Antić
,
D.
, and
Jovanović
,
Z.
,
2010
, “
Modeling of Dynamical Systems Based on Almost Orthogonal Polynomials
,”
Math. Comput. Model. Dyn. Syst.
,
16
(
2
), pp.
133
144
.
11.
Nikolić
,
S.
,
Antić
,
D.
,
Danković
,
B.
,
Milojković
,
M.
,
Jovanović
,
Z.
, and
Perić
,
S.
,
2010
, “
Orthogonal Functions Applied in Antenna Positioning
,”
Adv. Electr. Comput. Eng.
,
10
(
4
), pp.
35
42
.
12.
Szegö
,
G.
,
1975
,
Orthogonal Polynomials
, Vol.
23
,
American Mathematical Society/Colloquium Publications
,
Providence, RI
.
13.
Danković
,
B.
,
Rajković
,
P.
, and
Marinković
,
S.
,
2009
,
On a Class of Almost Orthogonal Polynomials
(Lecture Notes in Computer Science), Vol.
5434
,
S.
Margenov
,
L. G.
Vulkov
, and
J.
Wasniewski
, eds.,
Springer
,
Berlin
, pp.
241
248
.
14.
Brezinski
,
C.
,
Driver
,
K. A.
, and
Redivo-Zaglia
,
M.
,
2004
, “
Quasi-Orthogonality With Applications to Some Families of Classical Orthogonal Polynomials
,”
Appl. Numer. Math.
,
48
(
2
), pp.
157
168
.
15.
Milojković
,
M. T.
,
Antić
,
D. S.
,
Nikolić
,
S. S.
,
Jovanović
,
Z. D.
, and
Perić
,
S. Lj.
,
2013
, “
On a New Class of Quasi-Orthogonal Filters
,”
Int. J. Electron.
,
100
(
10
), pp.
1361
1372
.
16.
Jang
,
J.-S. R.
, and
Sun
,
C.-T.
,
1997
,
Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence
,
Prentice Hall
,
Englewood Cliffs, NJ
.
17.
The MathWorks Inc.
,
2014
,
Fuzzy Logic Toolbox™ User's Guide
,
The MathWorks Inc.
,
Natick, MA
.
18.
Zhang
,
Y.
,
Chai
,
T.
,
Wang
,
H.
,
Fu
,
J.
,
Zhang
,
L.
, and
Wang
,
Y.
,
2010
, “
An Adaptive Generalized Predictive Control Method for Nonlinear Systems Based on ANFIS and Multiple Models
,”
IEEE Trans. Fuzzy Syst.
,
18
(
6
), pp.
1070
1082
.
19.
Inteco
,
2008
, “
Modular Servo System-User's Manual
,” www.inteco.com.pl
20.
Antić
,
D.
,
Milojković
,
M.
,
Jovanović
,
Z.
, and
Nikolić
,
S.
,
2010
, “
Optimal Design of the Fuzzy Sliding Mode Control for a DC Servo Drive
,”
J. Mech. Eng.
,
56
(
7–8
), pp.
455
463
.
21.
Murray-Smith
,
R.
, and
Johansen
,
T.
,
1997
,
Multiple Model Approaches to Nonlinear Modelling and Control
,
Taylor & Francis
,
London
.
You do not currently have access to this content.