In redundant manipulation systems, the end-effector path does not completely determine the trajectories of all the individual degrees of freedom (dof) and the additional dofs can be used to enhance the performance in some sense. The paper deals with utilizing the redundancy to minimize energy consumption. A full linear electromechanical model is used, and the exact energy consumption is calculated. The optimization includes also displacement limits via penalty functions that are included in the cost function. The optimal trajectory is feasible in the sense that it can be obtained by a finite input voltage and all the velocities are continuous. The solution is based on projections that separate the system and the input into two parts. One that is completely determined by the end-effector path and the other that is free for optimization. The important and delicate issue of boundary conditions is resolved accordingly. Simulation results show that redundancy, even with limited joint motion, can lead to a considerable reduction in energy consumption.

References

1.
Galicki
,
M.
,
2004
, “
Path Following by the End-Effector of a Redundant Manipulator Operating in a Dynamic Environment
,”
IEEE Trans. Rob.
,
20
(
6
), pp.
1018
1025
.10.1109/TRO.2004.833782
2.
De Luca
,
A.
, and
Ferrajoli
,
L.
,
2008
, “
Exploiting Robot Redundancy in Collision Detection and Reaction
,”
International Conference on Intelligent Robots and Systems
, pp.
3299
3305
.
3.
Caccavale
,
F.
,
Chiavarini
,
S.
, and
Siciliano
B.
,
1997
, “
Second-Order Kinematic Control of Robot Manipulators With Jacobian Damped Least-Squares Inverse: Theory and Experiments
,”
IEEE/ASME Trans. Mechatron.
,
2
(
3
), pp.
188
194
.10.1109/3516.622971
4.
Larkworthy
,
T.
, and
Hayes
,
G.
,
2009
, “
Utilizing Redundancy in Modular Robots to Achieve Greater Accuracy
,”
International Conference on Robot Communication and Coordination
, Odense, Denmark, Mar. 31–Apr. 2, pp.
1
6
.
5.
Ohishi
,
K.
,
Nozawa
,
H.
, and
Miyazaki
,
T.
,
1999
, “
Redundant Manipulator Control With Autonomous Consideration Algorithm of Torque Saturation
,”
IEEE International Symposium on Industrial Electronics
,
1
, pp.
145
150
.10.1109/ISIE.1999.801774
6.
Nguyen
,
L. A.
,
Walker
,
I. D.
, and
DeFigueiredo
,
R. J. P.
,
1995
, “
Robustness Issues for Kinematically Redundant Manipulator Control
,”
IEEE Trans. Syst., Man Cybern.
,
25
(
6
), pp.
1010
1016
.10.1109/21.384266
7.
Khatib
,
O.
,
1990
, “
Motion/Force Redundancy of Manipulators
,”
Japan—USA Symposium on Flexible Automation
,
Kyoto, Japan
, July 23, pp.
337
342
.
8.
Martin
,
D. P.
,
Baillieul
J.
, and
Hollerbach
,
J. M.
,
1989
, “
Resolution of Kinematic Redundancy Using Optimization Techniques
,”
IEEE Trans. Rob. Autom.
,
5
(
4
), pp.
529
533
.10.1109/70.88067
9.
Bowling
,
A.
, and
Harmeyer
S.
,
2010
,
Repeatable Redundant Manipulator Control Using Nullspace Quasivelocities
,”
J. Dyn. Syst., Meas. Control
,
132
(
3
), p.
031007
.10.1115/1.4001334
10.
Enns
,
D.
,
1998
, “
Control Allocation Approaches
,”
Proceedings of AIAA Guidance, Navigation, and Control Conference
, Boston, MA, Aug. 5.
11.
Petersen
,
J. A. M.
, and
Bodson
,
M.
,
2006
, “
Constrained Quadratic Programming Techniques for Control Allocation
,”
IEEE Trans. Control Syst. Technol.
,
14
(
1
), pp.
91
98
.10.1109/TCST.2005.860516
12.
Malysz
,
P.
, and
Sirouspour
,
S.
,
2009
, “
Dual-Master Teleoperation Control of Kinematically Redundant Robotic Slave Manipulators
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, pp.
5115
5120
.
13.
Xiang
,
J.
,
Zhong
,
C.
, and
Wei
,
W.
,
2010
, “
General-Weighted Least-Norm Control for Redundant Manipulators
,”
IEEE Trans. Rob.
,
26
(
4
), pp.
660
669
.10.1109/TRO.2010.2050655
14.
Galicki
,
M.
,
2000
,
Time-Optimal Controls of Kinematically Redundant Manipulators With Geometric Constraints
,”
IEEE Trans. Rob. Autom.
,
16
(
1
), pp.
89
93
.10.1109/70.833194
15.
Ma
,
S.
, and
Watanabe
,
M.
,
2004
, “
Time Optimal Path-Tracking Control of Kinematically Redundant Manipulators
,”
JSME Int. J., Ser. C
,
47
(
2
), pp.
582
590
.10.1299/jsmec.47.582
16.
Fahham
,
H. R.
,
Farid
,
M.
, and
Khooron
,
M.
,
2011
, “
Time Optimal Trajectory Tracking of Redundant Planar Cable-Suspended Robots Considering Both Tension and Velocity Constraints
,”
ASME J. Dyn. Syst. Meas. Control
,
133
(1), p.
011004
.10.1115/1.4002712
17.
Ma
,
S.
,
1994
, “
Local Torque Optimization of Redundant Manipulators in Torque-Based Formulation
,”
IEEE International Conference on Industrial Electronics, Control and Instrumentation
, Vol.
2
, pp.
697
702
.
18.
Zhang
,
Y.
, and
Ma
,
S.
,
2007
, “
Minimum-Energy Redundancy Resolution of Robot Manipulators Unified by Quadratic Programming and Its Online Solution
,”
IEEE International Conference on Mechatronics and Automation. ICMA
, pp.
3232
3237
.
19.
Deo
,
A. S.
, and
Walker
,
I. D.
,
1997
, “
Minimum Effort Inverse Kinematics for Redundant Manipulators
,”
IEEE Trans. Rob. Autom.
,
13
(
5
), pp.
767
775
.10.1109/70.631238
20.
Hirakawa
,
A. R.
, and
Kawamura
,
A.
,
1996
, “
Proposal of Trajectory Generation for Redundant Manipulators Using Variational Approach and the Application to Consumed Electrical Energy Minimization
,”
IEEE Proceedings of Advanced Motion Control
, pp.
687
692
.
21.
Hirakawa
,
A. R.
, and
Kawamura
,
A.
,
1997
, “
Trajectory Planning of Redundant Manipulators for Minimum Energy Consumption Without Matrix Inversion
,”
International Conference on Robotics and Automation
, Vol.
3
, pp.
2415
2420
.
22.
Flacco
,
F.
,
De Luca
,
A.
, and
Khatib
,
O.
,
2012
, “
Prioritized Multi-Task Motion Control of Redundant Robots Under Hard Joint Constraints
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Vilamoura, Portugal
, pp.
3970
3977
.
23.
Halevi
,
Y.
,
Carpanzano
,
A.
,
Montalbano
,
G.
, and
Koren
,
Y.
,
2011
, “
Minimum Energy Control of Redundant Actuation Machine Tools
,”
CIRP Ann. - Manuf. Technol.
,
60
, pp.
433
436
.10.1016/j.cirp.2011.03.032
24.
Halevi
,
Y.
,
Carpanzano
,
A.
, and
Montalbano
,
G.
,
2012
, “
Minimum Energy Control of Redundant Cartesian Manipulators
,”
Proceedings of the 11th Biennial ASME Conference on Engineering Systems Design and Analysis (ESDA)
,
Nantes, France
, July 2–4.
25.
Jacobson
,
D. H.
,
Lele
,
M. M.
, and
Speyer
,
J. L.
,
1971
, “
New Necessary Conditions of Optimality for Control Problems With State-Variable Inequality Constraints
,”
J. Math. Anal. Appl.
,
35
(
2
), pp.
255
284
.10.1016/0022-247X(71)90219-8
26.
Hartl
,
R. F.
,
Sethi
,
S. P.
, and
Vickson
,
R. G.
,
1995
, “
A Survey of the Maximum Principles for Optimal Control Problems With State Constraints
,”
SIAM Rev.
,
37
, pp.
181
218
.10.1137/1037043
27.
Aghili
,
F.
,
2011
, “
Projection Based Control of Parallel Mechanisms
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(3), p.
031009
.10.1115/1.4002942
28.
Halevi
,
Y.
,
1989
, “
The Optimal Reduced Order Estimator for Systems With Singular Measurement Noise
,”
IEEE Trans. Autom. Control
,
34
, pp.
777
781
.10.1109/9.29413
29.
Bryson
,
A. E.
, and
Ho
,
Y. C.
,
1975
,
Applied Optimal Control
,
Wiley
,
New York
.
30.
Zagorianos
,
A.
,
Kontoyannis
,
E.
, and
Tzafestas
,
S.
,
1994
, “
Resolved Motion Model Based Predictive Control of Redundant Robots
,”
Math. Comput. Simul.
,
37
(
2–3
), pp.
195
205
.10.1016/0378-4754(94)90018-3
You do not currently have access to this content.