It has been known that redundant constrains in a mechanism can improve the rigidity and stiffness of the mechanism. Some Parallel Kinematic Machines (PKMs) have adopted redundant constraints to enhance their performance and stability. However, limited studies have been conducted on the dynamics of over-constrained mechanisms. While a dynamic model is not essential to machine control, a clear understanding of the dynamic behavior of the system can be useful in identifying the weakest components, optimizing the overall structure, and improving the quality of control. In this paper, the dynamic characteristics of an over-constrained PKM are investigated for the first time. The Newton–Euler formulation is extended to develop the dynamic model of the machine. It is shown that the compliance of deformations of the redundant constraints needs to be taken into account to build a complete and solvable dynamic model since the number of equations derived from the force and moment equilibrium of the PKM components is insufficient to determine all unknown variables. The proposed approach is generic in sense that it can be applied to model dynamic behaviors of other over-constrained machines with a combination of the Newton–Euler formulation and compliance conditions. Its effectiveness has been verified by the dynamic model established for Exechon PKM. The developed dynamic model has its potential to be integrated with control systems to improve accuracy and dynamic performance of real-time control.

References

1.
Merlet
,
J. P.
,
2006
,
Parallel Robot
,
Springer
,
Berlin
.
2.
Merlet
,
J. P.
,
1999
, “
The Importance of Optimal Design for Parallel Structures, Parallel Kinematic Machines: Theoretical Aspects and Industrial Requirements
,”
Advanced Manufacturing Series
,
Boer, C. R.
Molinari-Tosatti
, and
K. S.
Smith
, eds.,
Springer-Verlag
,
London
, pp.
99
110
.
3.
Gough
,
V. E.
,
1957
, “
Contribution to Discussion to Papers on Research in Automobile Stability and Control and in Type Performance
,”
Proceedings of the Automobile Division Institution of Mechanical Engineers
, pp.
392
395
.
4.
Steward
,
D.
,
1965
, “
A Platform With Six Degrees of Freedom
,”
Proceeding of the Institution of Mechanical Engineers
,
180
(
5
), pp.
371
386
.10.1243/PIME_PROC_1965_180_029_02
5.
Weck
,
M.
, and
Staimer
,
D.
,
2002
, “
Parallel Kinematic Machine Tools—Current State and Future Potentials
,”
CIRP Annals-Manuf. Technol.
,
51
(
2
), pp.
671
683
.10.1016/S0007-8506(07)61706-5
6.
Olazagoitia
,
J. L.
, and
Wyatt
,
S.
,
2007
, “
New PKM Tricept T9000 and Its Application to Flexible Manufacturing at Aerospace Industry
,” ASE International, Paper No. 2007-01-3820.
7.
Bonev
,
L.
,
2001
, “
Delta Parallel Robot—The Story of Success
,” http://www.parallemic.org/reviews/review002.html
8.
Rehsteiner
,
F.
,
Neugebauer
,
R.
,
Spiewak
,
S.
, and
Wieland
,
F.
,
1999
, “
Putting Parallel Kinematics Machines (PKM) to Productive Work
,”
Ann. CIRP
,
48
(
1
), pp.
345
350
.10.1016/S0007-8506(07)63199-0
9.
Callegari
,
M.
,
Palpacelli
,
M.-C.
, and
Principi
,
M.
,
2006
, “
Dynamics Modelling and Control of the 3-RCC Translational Platform
,”
Mechatronics
,
16
, pp.
589
605
.10.1016/j.mechatronics.2006.06.001
10.
Krefft
,
M.
,
Last
,
P.
,
Budde
,
C.
,
Maass
,
J.
, and
Hesselbach
,
J.
,
2007
, “
Improvement of Parallel Robots for Handling and Assembly Tasks
,”
Assem. Autom.
,
27
(
3
), pp.
222
230
.10.1108/01445150710763240
11.
Tlusty
,
J.
,
Ziegert
,
J. C.
, and
Ridgeway
,
S.
,
2000
, “
A Comparison of Stiffness Characteristics of Serial and Parallel Machine Tools
,”
J. Manuf. Processes
,
2
(
1
), pp.
67
76
.10.1016/S1526-6125(00)70014-4
12.
Paccot
,
F.
,
Andreff
,
N.
, and
Martinet
,
P.
,
2009
, “
A Review on Dynamic Control of Parallel Kinematic Machines: Theory and Experiments
,”
Int. J. Rob. Res.
,
28
(
3
), pp.
395
416
.10.1177/0278364908096236
13.
Wang
,
J. S.
,
Wu
,
J.
, and
Wang
,
L. P.
,
2007
, “
Simplified Strategy of the Dynamic Model of a 6-UPS Parallel Kinematic Machine for Real-Time Control
,”
Mech. Mach. Theory
,
42
(
9
), pp.
1119
1140
.10.1016/j.mechmachtheory.2006.09.004
14.
Wiens
,
G. J.
, and
Hardage
,
D. S.
,
2006
, “
Structural Dynamics and System Identification of Parallel Kinematic Machines
,”
Proceedings of IDETC/CIE 2006 ASME International Design Engineering Technical Conference
, Sept. 10–13,
Philadelphia, PA
, Paper No. DETC2006-99671.
15.
Zhou
,
Z.
,
Xi
,
F. F.
, and
Mechefske
,
C. K.
,
2006
, “
Modeling and Analysis of a Fully Flexible Tripod With Sliding Legs
,”
ASME J. Mech. Des.
,
128
, pp.
403
412
.10.1115/1.2167655
16.
Zhou
,
Z.
,
Mechefske
,
C. K.
, and
Xi
,
F. F.
,
2007
, “
Nonstationary Vibration of a Fully Flexible Parallel Kinematic Machine
,”
ASME J. Vib. Acoust.
,
129
, pp.
623
630
.10.1115/1.2748477
17.
Molinari Tosatti
,
L.
,
Bianchi
,
G.
,
Fassi
,
I.
,
Boer
,
C. R.
, and
Jovane
,
F.
,
1997
, “
An Integrated Methodology for the Design of Parallel Kinematic Machines (PKM)
,”
CIRP Annals - Manuf. Technol.
,
47
(
1
), pp.
341
345
.10.1016/S0007-8506(07)62847-9
18.
Xi
,
F. F.
,
Angelico
,
O.
, and
Sinatra
,
R.
,
2005
, “
Tripod Dynamics and Its Inertia Effect
,”
ASME J. Mech. Des.
,
127
, pp.
144
149
.10.1115/1.1814652
19.
Krabbes
,
K.
, and
Meibner
,
Ch.
,
2006
, “
Dynamic Modeling and Control of a 6 DOF Parallel Kinematics
,”
Modelica Conference
,
Vienna, Austria
, Sept. 4th–5th, 2006, http://www.modelica.org/events/modelica2006/Proceedings/sessions/Session407.pdf
20.
Pritschow
,
G.
,
2000
, “
Influence of the Dynamic Stiffness on the Accuracy of PKM
,”
Proceedings of the Chemnitz Parallel Kinematic Seminar
,
Chemnitz, Germany
, pp.
313
333
.
21.
Pritschow
,
G.
,
2000
. “
Parallel Kinematic Machines (PKM)—Limitations and New Directions
,”
Ann. CIRP
,
49
(
1
), pp.
275
280
.10.1016/S0007-8506(07)62945-X
22.
Bi
,
Z. M.
,
Lang
,
S. Y. T.
, and
Verner
,
M.
,
2008
, “
Dynamic Modeling and Validation of a Tripod-Based Machine Tool
,”
Int. J. Adv. Manuf. Technol.
,
37
(
3–4
), pp.
410
421
.10.1007/s00170-007-0980-5
23.
Li
,
Y. M.
, and
Xu
,
Q. S.
,
2009
, “
Dynamic Modeling and Robust Control of a 3-PRC Translational Parallel Kinematic Machine
,”
Rob. Comput.-Integr. Manuf.
,
25
, pp.
630
640
.10.1016/j.rcim.2008.05.006
24.
Li
,
Y.-W.
,
Wang
,
J.-S.
,
Wang
,
L.-P.
, and
Liu
,
X.-J.
,
2003
, “
Inverse Dynamics and Simulation of a 3-DOF Spatial Parallel Manipulator
,”
Proceedings of IEEE International Conference on Robotics and Automation
, pp.
4092
4097
.
25.
Di Gregorio
,
R.
, and
Parenti-Castelli
,
V.
,
2004
, “
Dynamics of a Class of Parallel Wrists
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
436
441
.10.1115/1.1737382
26.
Wang
,
J.
, and
Gosselin
,
C. M.
,
1998
, “
A New Approach for the Dynamic Analysis of Parallel Manipulators
,”
Multi-body Syst. Dyn.
,
2
(
3
), pp.
317
334
.10.1023/A:1009740326195
27.
Tsai
,
L. W.
,
1999
,
Robot Analysis: The Mechanics of Serial and Parallel Manipulators
,
John Wiley & Sons
,
New York
.
28.
Tsai
,
L. W.
,
2000
, “
Solving the Inverse Dynamics of a Stewart-Gough Manipulator by the Principle of Virtual Work
,”
ASME J. Mech. Des.
,
122
(
3
), pp.
3
9
.10.1115/1.533540
29.
Wiens
,
G. J.
,
Shamblin
,
S. A.
, and
Oh
,
Y.-H.
,
2002
, “
Characterization of PKM Dynamics In Terms Of System Identification
,” Proceedings of the Institution of Mechanical Engineers, Part K:
J. Multi-body Dyn.
,
216
(
1
), pp.
59
72
.10.1243/146441902760029393
30.
Baiges-Valentin
,
I. J.
,
1996
, “
Dynamic Modeling of Parallel Manipulators
,” PhD. dissertation, University of Florida, Gainesville, FL.
31.
Wiens
,
G. J.
, and
Hardage
,
D. S.
,
2006
, “
Structural Dynamics and System Identification of Parallel Kinematic Machines
,”
ASME 2006 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
, Sept. 10–13, Philadelphia, PA, Paper No. DECT2006-99671. 10.1115/DETC2006-99671
32.
Liu
,
M.
,
1999
, “
Dynamics Analysis of the Stewart Platform Manipulator
,”
Proceedings of the International Symposium on Test and Measurement, International Academic Publisher
,
Beijing, China
, pp.
920
923
.
33.
Do
,
W. Q. D.
, and
Yang
,
D. C. H.
,
1988
, “
Inverse Dynamic Analysis and Simulation of a Platform Type of Robot
,”
J. Rob. Syst.
,
5
(
3
), pp.
207
227
.10.1002/rob.4620050304
34.
Ji
,
Z.
,
1993
, “
Study of the Effect of the Leg Inertia in Stewart Platform
,”
IEEE International Conference on Robotics and Automation
,
Atlanta, GA
, Vol.
1
, pp.
121
126
.
35.
Ji
,
Z.
,
1994
, “
Dynamics Decomposition for Stewart Platforms
,”
ASME J. Mech. Des.
,
116
(
1
), pp.
67
69
.10.1115/1.2919378
36.
Codourey
,
A.
,
1998
, “
Dynamics Modeling of Parallel Robotics for Computed-Torque Control Implementation
,”
Int. J. Rob. Res.
,
17
(
12
), pp.
1325
1336
.10.1177/027836499801701205
37.
Xi
,
F. F.
,
2001
, “
A Comparison Study On Hexapods With Fixed-Length Legs
,”
Int. J. Mach. Tools Manuf.
,
41
(
12
), pp.
1735
1748
.10.1016/S0890-6955(01)00038-4
38.
Kozak
,
K.
,
Ebert-Uphoff
,
I.
, and
Singhose
,
W.
,
2004
, “
Locally Linearized Dynamic Analysis of Parallel Manipulators and Application of Input Shaping to Reduce Vibrations
,”
ASME J. Mech. Des
,
126
, pp.
156
168
.10.1115/1.1640362
39.
Dasgupta
,
B.
, and
Choudhury
,
P.
,
1999
, “
A General Strategy Based on the Newton–Euler Approach for the Dynamic Formulation of Parallel Manipulators
,”
Mech. Mach. Theory
,
34
(
6
), pp.
801
824
.10.1016/S0094-114X(98)00081-0
40.
Dasgupta
,
B.
, and
Mruthyunjaya
,
T. S.
,
1998
, “
A Newton–Euler formulation for the Inverse Dynamics of the Stewart Platform Manipulator
,”
Mech. Mach. Theory
,
33
(
8
), pp.
1135
1152
.10.1016/S0094-114X(97)00118-3
41.
Wang
,
J.
, and
Masory
,
O.
,
1993
, “
On the Accuracy of a Stewart Platform—Part I: The Effect of Manufacturing Tolerances
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Atlanta, GA
, pp.
114
120
.
42.
Neumann
,
K.
,
2008
, “
Adaptive In-Jig High Load Exechon Machining & Assembly Technology
,” SAE International, Paper No. 08AMT-0044.
43.
Neumann
,
K.
,
1988
, Robot, US Patent No. 4732525.
44.
Neumann
,
K.
,
2002
, “
Tricept Applications
,”
Proceeding of 3rd Chemnitz Parallel Kinematics Seminar, Verlag Wissenschaftliche Scripten
,
Zwickau
, May 23–25, pp.
547
551
.
45.
PKM Tricept
S. L.
,
2009
, http://www.pkmtricept.com/
46.
47.
Bi
,
Z. M.
, and
Jin
,
Y.
,
2011
, “
Kinematic Modeling of Parallel Kinematic Machine Exechon
,”
Rob. Comput. Integr. Manuf.
,
27
(
1
), pp.
186
193
.10.1016/j.rcim.2010.07.006
48.
Waldron
,
K. J.
, and
Kinzel
,
G. L.
,
2003
,
Kinematics, Dynamics, and Design of Machinery
,
Wiley
,
New York
.
49.
Gogu
,
G.
,
2005
, “
Hebychev–Grübler–Kutzbach's Criterion for Mobility Calculation of Multi-Loop Mechanisms Revisited via Theory of Linear Transformations
,”
Eur. J. Mech. A
,
24
, pp.
427
441
.10.1016/j.euromechsol.2004.12.003
50.
Jama
,
2005
, “A Java Matrix Package,” http://math.nist.gov/javanumerics/jama/
51.
Zahariev
,
E.
, and
Cuadrado
,
J.
,
2007
, “
Dynamics of Over-Constrained Rigid and Flexible Multibody Systems
,”
12th IFToMM World Congress
,
Besançon, France
, June 18–21,
2007
.
You do not currently have access to this content.