This paper presents an adaptive output-feedback control method based on neural networks for flexible link manipulator which is a nonlinear nonminimum phase system. The proposed controller comprises a linear, a neuro-adaptive, and an adaptive robustifying parts. The neural network is designed to approximate the matched uncertainty of the system. The inputs of the neural network are the tapped delays of the system input–output signals. In addition, an appropriate reference signal is proposed to compensate the unmatched uncertainty inherent in the internal system dynamics. The adaptation laws for the neural network weights and adaptive gains are obtained using the Lyapunov’s direct method. These adaptation laws employ a linear observer of system dynamics that is realizable. The ultimate boundedness of the error signals are analytically shown using Lyapunov's method.

References

1.
Seshagiri
,
S.
, and
Khalil
,
H.
,
2000
, “
Output Feedback Control of Nonlinear Systems Using RBF Neural Networks
,”
IEEE Trans. Neural Networks
,
11
, pp.
69
79
.10.1109/72.822511
2.
Hovakimyan
,
N.
,
Nardi
,
F.
, and
Calise
,
A. J.
,
2002
, “
A Novel Error Observer Based Adaptive Output Feedback Approach for Control of Uncertain Systems
,”
IEEE Trans. Automat. Control
,
47
, pp.
1310
1314
.10.1109/TAC.2002.800766
3.
Ge
,
S. S.
, and
Zhang
,
T.
,
2003
, “
Neural Network Control of Non-Affine Nonlinear With Zero Dynamics by State and Output Feedback
,”
IEEE Trans. Neural Networks
,
14
, pp.
900
918
.10.1109/TNN.2003.813823
4.
Shang
,
F.
, and
Liu
,
Y. G.
,
2010
, “
Adaptive Output-Feedback Stabilization for a Class of Uncertain Nonlinear Systems
,”
Acta Automatica Sin.
,
36
, pp.
92
100
.10.3724/SP.J.1004.2010.00092
5.
Wu
,
Y.
,
Yu
,
J.
, and
Zhao
,
Y.
,
2012
, “
Output Feedback Regulation Control for a Class of Cascade Nonlinear Systems and Its Application to Fan Speed Control
,”
Nonlinear Anal.
,
13
, pp.
1278
1291
.10.1016/j.nonrwa.2011.10.005
6.
Ding
,
Z.
,
2005
, “
Semi-Global Stabilisation of a Class of Non-Minimum Phase Nonlinear Output-Feedback System
,”
IEE Proc.: Control Theory Appl.
,
152
, pp.
460
464
.10.1049/ip-cta:20041246
7.
Karagiannis
,
D.
,
Jiang
,
Z. P.
,
Ortega
,
R.
, and
Astolfi
,
A.
,
2005
, “
Output-Feedback Stabilization of a Class of Uncertain Non-Minimum Phase Nonlinear Systems
,”
Automatica
,
41
,
pp
.1609–1615.10.1016/j.automatica.2005.04.013
8.
Isidori
,
A.
,
2000
, “
A Tool for Semilobal Stabilization of Uncertain Non-Minimum Phase Nonlinear Systems via Output Feedback
,”
IEEE Trans. Autom. Control
,
45
, pp.
1817
1827
.10.1109/TAC.2000.880972
9.
Lan
,
W.
, and
Chen
,
B. M.
,
2008
, “
Explicit Construction of H∞ Control Law for a Class of Nonminimum Phase Nonlinear Systems
,”
Automatica
,
44
, pp.
738
774
.10.1016/j.automatica.2007.06.019
10.
Chen
,
S. C.
, and
Chen
,
W. L.
,
2003
, “
Output Regulation of Nonlinear Uncertain System With Non-Minimum Phase via Enhances RBFN Controller
,”
IEEE Trans. Syst. Man Cybern., Part A. Syst. Humans
,
33
, pp.
265
270
.10.1109/TSMCA.2003.810907
11.
Lee
,
C. H.
,
2004
, “
Stabilization of Nonlinear Nonminimum Phase Systems: Adaptive Parallel Approach Using Recurrent Fuzzy Neural Network
,”
IEEE Trans. Syst., Man, Cybern., Part B: Cybern.
,
34
, pp.
1075
1088
.10.1109/TSMCB.2003.820592
12.
Hoseini
,
S. M.
, and
Farrokhi
,
M.
,
2009
, “
Neuro-Adaptive Output Feedback Control for Class of Nonlinear Non-Minimum Phase Systems
,”
J. Intell. Robotic Syst.
,
56
, pp.
487
511
.10.1007/s10846-009-9325-y
13.
Gopalswamy
,
S.
, and
Hedrick
,
J. K.
,
1993
, “
Tracking Nonlinear Non-Minimum Phase Systems Using Sliding Control
,”
Int. J. Control
,
57
, pp.
1141
1158
.10.1080/00207179308934436
14.
Lee
,
Y.
,
Kouvaritakis
,
B.
, and
Cannon
,
M.
,
2008
, “
Input–Output Feedback Linearization for Non-Minimum Phase Nonlinear Systems Through Periodic Use of Synthetic Outputs
,”
Syst. Control Lett.
,
57
, pp.
626
630
.10.1016/j.sysconle.2008.01.004
15.
Hauser
,
J.
,
Sastry
,
S.
, and
Meyer
,
G.
,
1992
, “
Nonlinear Control Design for Slightly Non-Minimum Phase Systems: Application to V/STOL Aircraft
,”
Automatica
,
28
, pp.
665
679
.10.1016/0005-1098(92)90029-F
16.
Doyle
,
F.
,
Allgower
,
F.
,
Oliveria
,
S.
,
Gilles
,
E.
, and
Moran
,
M.
,
1992
, “
On Nonlinear Systems With Poorly Behaved Zero Dynamics
,”
Proceedings of the American Control Conference
, pp. 2571–2575.
17.
Sadegh
,
N.
,
1993
, “
A Perceptron Network for Functional Identification and Control of Nonlinear Systems
,”
IEEE Trans. Neural Networks
,
4
, pp.
982
988
.10.1109/72.286893
18.
Hoseini
,
S. M.
,
Farrokhi
,
M.
, and
Koshkouei
,
A. J.
,
2010
, “
Adaptive Neural Network Output Feedback Stabilization of Nonlinear Non-Minimum Phase Systems
,”
Int. J. Adapt. Control Signal Process.
,
24
,
pp
. 65–82. 10.1002/acs.1111
19.
Polycarpou
,
M. M.
,
1996
, “
Stable Adaptive Neural Control Scheme for Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
41
, pp.
447
451
.10.1109/9.486648
20.
Lewis
,
F. L.
,
Liu
,
K.
, and
Yesildirek
,
A.
,
1995
, “
Neural Net Robot Controller With Guaranteed Tracking Performance
,”
IEEE Trans. Neural Networks
,
6
, pp.
703
715
.10.1109/72.377975
21.
Yesildirek
,
A.
, and
Lewis
,
F.
,
1994
, “
Feedback Linearization Using Neural Networks
,”
Proceedings of
IEEE
International Conference on Neural Networks, pp. 2539–2544. 10.1109/ICNN.1994.374620
22.
Gutierrez
,
L. B.
,
Lewis
,
F. L.
, and
Lowe
,
J. A.
,
1998
, “
Implementation of a Neural Network Tracking Controller for a Single Flexible Link: Comparison With PD and PID Controllers
,”
IEEE Trans. Ind. Electron.
,
45
, pp.
307
318
.10.1109/41.681230
23.
Zhang
,
Y.
,
Yang
,
T.
, and
Sun
,
Z.
,
2009
, “
Neuro-Sliding-Mode Control of Flexible-Link Manipulators Based on Singularly Perturbed Model
,”
Tsinghua Sci. Technol.
,
14
, pp.
444
451
.10.1016/S1007-0214(09)70100-2
24.
Rigatos
,
G. G.
,
2009
, “
Model-Based and Model-Free Control of Flexible-Link Robots: A Comparison Between Representative Methods
,”
Appl. Math. Model.
,
33
, pp.
3906
3925
.10.1016/j.apm.2009.01.012
25.
Arciniegas
,
J. I.
,
Eltimsahy
,
A.
, and
Cios
,
K. J.
,
1993
, “
Fuzzy Inference and the Control of Flexible Robotic Manipulators
,” Proceedings of the
IEEE
International Symposium on Intelligent Control, pp. 250–254. 10.1109/ISIC.1993.397705
26.
Wedding
,
D. K.
, and
Eltimsahy
,
A.
,
2000
, “
Flexible Link Control Using Multiple Forward Paths, Multiple RBF Neural Networks in a Direct Control Application
,”
Proceedings of the
IEEE
International Conference on Systems,
Man
,
and Cybernetics
, pp. 2619–2624. 10.1109/ICSMC.2000.884389
27.
Wu
,
L.
,
Sun
,
Z.
, and
Sun
,
F.
,
2001
, “Neural Networks Control Structure for Manipulators With Flexible Last Link,” Proceedings of the
IEEE
/RSJ International Conference on Intelligent Robots and Systems, pp. 2404–2408. 10.1109/IROS.2001.976429
28.
Maeda
,
Y.
,
2002
, “
Real-Time Control and Learning Using Neuro-Controller via Simultaneous Perturbation for Flexible Arm System
,”
Proceedings of the American Control Conference
,
ACC
, pp. 2583–2588. 10.1109/ACC.2002.1025174
29.
Talebi
,
H. A.
,
Patel
,
R. V.
, and
Khorasani
,
K.
,
2005
, “
A Neural Network Controller for a Class of Nonlinear Non-Minimum Phase Systems With Application to a Flexible-Link Manipulator
,”
ASME J. Dyn. Sys., Meas., Control
,
127
, pp.
289
294
.10.1115/1.1898232
30.
Lavertsky
,
E.
,
Calise
,
A. J.
, and
Hovakimyan
,
N.
,
2003
, “
Upper Bounds for Approximation of Continuous-Time Dynamics Using Delayed Outputs and Feedforward Neural Networks
,”
IEEE Trans. Autom. Control
,
48
, pp.
1606
1610
.10.1109/TAC.2003.816987
31.
Wang
,
D.
, and
Vidiasagar
,
M. T.
,
1991
, “
Transfer Function for Single Flexible Link
,”
Int. J. Robot. Res.
,
10
, pp.
540
549
.10.1177/027836499101000509
32.
Khalil
,
H.
,
2002
,
Nonlinear Systems
,
Prentice-Hall, Englewood Cliffs, NJ
.
You do not currently have access to this content.