This paper discusses the application of four nonlinear estimation techniques on two benchmark target tracking problems. The first problem is a generic air traffic control (ATC) scenario, which involves nonlinear system equations with linear measurements. The second study is a classical ground surveillance problem, where a moving airborne platform with a sensor is used to track a moving target. The tracking scenario is set in two dimensions, with the measurement providing nonlinear bearing-only observations. These two target tracking problems provide a good benchmark for comparing the following nonlinear estimation techniques: the common extended and unscented Kalman filters (EKF/UKF), the particle filter (PF), and the relatively new smooth variable structure filter (SVSF). The results of applying the SVSF on the two target tracking problems demonstrate its stability and robustness. Both of these attributes make use of the SVSF advantageous over other popular methods. The filters performances are quantified in terms of robustness, resilience to poor initial conditions and measurement outliers, and tracking accuracy and computational complexity. The purpose of this paper is to demonstrate the effectiveness of applying the SVSF on nonlinear target tracking problems, which in the past have typically been solved by Kalman or particle filters.

References

1.
Kalman
,
R. E.
, 1960, “
A New Approach to Linear Filtering and Prediction Problems
,”
Trans. ASME J. Basic Eng.
,
82
, pp.
35
45
.
2.
Grewal
,
M. S.
, and
Andrews
,
A. P.
, 2008,
Kalman Filtering: Theory and Practice Using MATLAB
, 3rd ed.,
Wiley
,
New York
.
3.
Bar-Shalom
,
Y.
,
Rong Li
,
X.
, and
Kirubarajan
,
T.
, 2001,
Estimation With Applications to Tracking and Navigation
,
Wiley
,
New York
.
4.
Ristic
,
B.
,
Arulampalam
,
S.
, and
Gordon
,
N.
, 2004,
Beyond the Kalman Filter: Particle Filters for Tracking Applications
,
Artech House
,
Boston, MA
.
5.
Habibi
,
S. R.
,
Burton
,
R.
, and
Chinniah
,
Y.
, 2002, “
Estimation Using a New Variable Structure Filter
,”
American Control Conference
, Anchorage, AK, pp.
2937
2942
.
6.
Habibi
,
S. R.
, and
Burton
,
R.
, 2003, “
The Variable Structure Filter
,”
ASME J. Dyn. Syst. Meas. Control
,
125
, pp.
287
293
.
7.
Nise
,
N.
, 2011,
Control Systems Engineering
, 6th ed.,
Wiley
,
New York
.
8.
Gadsden
,
S. A.
, 2011, “
Smooth Variable Structure Filtering: Theory and Applications
,” Ph.D. thesis, Department of Mechanical Engineering, McMaster University, Hamilton, ON.
9.
Anderson
,
B. D. O.
, and
Moore
,
J. B.
, 1979,
Optimal Filtering
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
10.
Gelb
,
A.
, 1974,
Applied Optimal Estimation
,
MIT Press
,
Cambridge, MA
.
11.
Welch
,
G.
, and
Bishop
,
G.
, 2006, “
An Introduction to the Kalman Filter
,”
Department of Computer Science
,
University of North Carolina
,
Chapel Hill, NC
.
12.
Simon
,
D.
, 2006,
Optimal State Estimation: Kalman, H-Infinity, and Nonlinear Approaches
,
Wiley-Interscience
,
Hoboken, NJ
.
13.
Van der Merwe
,
R.
, and
Wan
,
E.
, 2004, “
Sigma-Point Kalman Filters for Integrated Navigation
,”
Proceedings of the Institute of Navigation Annual Meeting
,
Dayton, OH
, pp.
641
654
.
14.
Van der Merwe
,
R.
, 2004, “
Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic State Space Models
,” Ph.D. thesis, OGI School of Science and Engineering, Oregon Health and Science University, Portland, OR.
15.
Al-Shabi
,
M.
, 2011, “
The General Toeplitz/Observability SVSF
,”, Ph.D. thesis, Department of Mechanical Engineering, McMaster University, Hamilton.
16.
Ambadan
,
J.
, and
Tang
,
Y.
, 2009, “
Sigma-Point Kalman Filter Data Assimilation Methods for Strongly Nonlinear Systems
,”
J. Atmos. Sci.
,
66
(
2
), pp.
261
285
.
17.
Tang
,
X.
,
Zhao
,
X.
, and
Zhang
,
X.
, 2008, “
The Square-Root Spherical Simplex Unscented Kalman Filter for State and Parameter Estimation
,”
Proceedings of the International Conference on Signal Processing
,
Beijing
, pp.
260
263
.
18.
Julier
,
S. J.
,
Ulhmann
,
J. K.
, and
Durrant-Whyte
,
H. F.
, 2000, “
A New Method for Nonlinear Transformation of Means and Covariances in Filters and Estimators
,”
IEEE Trans. Autom. Control
,
45
, pp.
472
482
.
19.
Julier
,
S. J.
, and
Uhlmann
,
J. K.
, 2004, “
Unscented Filtering and Nonlinear Estimation
,”
Proc. IEEE
,
92
(
3
), pp.
401
422
.
20.
Kim
,
S.
, and
Han
,
W.
, 2005, “
Joint Estimation of Time Delay and Channel Amplitude by Simplex Unscented Filter Without Assisted Pilot in CDMA Systems
,”
The 7th International Conference on Advanced Communications Technology
,
Phoenix Park, South Korea
, pp.
233
240
.
21.
Julier
,
S.
, 2003, “
The Spherical Simplex Unscented Transformation
,”
Proceedings of the American Conference Conference
,
Denver
, pp.
2430
2434
.
22.
Haykin
,
S.
, 2001,
Kalman Filtering and Neural Networks
,
Wiley
,
New York
.
23.
Moral
,
D.
, 1998, “
Measure Valued Processes and Interacting Particle Systems: Application to Non-Linear Filtering Problems
,”
Ann. Appl. Prob.
,
8
(
2
), pp.
438
495
.
24.
Gordon
,
N. J.
,
Salmond
,
D. J.
, and
Smith
,
A. F. M.
, 1993, “
Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation
,”
IEEE Proc.-F
,
140
(
2
), pp.
107
113
.
25.
MacCormick
,
J.
, and
Blake
,
A.
, 1999, “
A Probabilistic Exclusion Principle for Tracking Multiple Objects
,”
Proceedings of International Conference on Computer Vision
,
Kerkyra, Greece
, pp.
572
578
.
26.
Kanazawa
,
K.
,
Koller
,
D.
, and
Russell
,
S. J.
, 1995, “
Stochastic Simulation Algorithms for Dynamic Probabilistic Networks
,”
Proceedings of the Eleventh Annual Conference on Uncertainty in Artificial Intelligence
,
Montreal
, pp.
346
351
.
27.
Hammersley
,
J. M.
, and
Morton
,
K. W.
, 1954, “
Poor Man’s Monte Carlo
,”
J. Roy. Stat. Soc. B
,
16
, pp.
23
28
.
28.
Handschin
,
J. E.
, and
Mayne
,
D. Q.
, 1969, “
Monte Carlo Techniques to Estimate the Conditional Expectation in Multi-Stage Non-Linear Filtering
,”
Int. J. Control
,
9
(
5
), pp.
547
559
.
29.
Akashi
,
H.
, and
Kumamoto
,
H.
, 1977, “
Random Sampling Approach to State Estimation in Switching Environments
,”
Automatica
,
13
, pp.
429
434
.
30.
Doucet
,
A.
,
de Freitas
,
N.
, and
Gordon
,
N. J.
, 2001,
Sequential Monte Carlo Methods in Practice
,
Springer
,
New York
.
31.
Djuric
,
P. M.
, and
Goodsill
,
S. J.
, 2002, “
Guest Editorial Special Issue on Monte Carlo Methods for Statistical Signal Processing
,”
IEEE Trans. Signal Process.
,
50
(
2
), p.
173
.
32.
Kong
,
A.
,
Liu
,
J. S.
, and
Wong
,
W. H.
, 1994, “
Sequential Imputations and Bayesian Missing Data Problems
,”
J. Am. Stat. Assoc.
,
89
(
425
), pp.
278
288
.
33.
Habibi
,
S. R.
, 2007, “
The Smooth Variable Structure Filter
,”
Proc. IEEE
,
95
(
5
), pp.
1026
1059
.
34.
Wang
,
H.
,
Kirubarajan
,
T.
, and
Bar-Shalom
,
Y.
, 1999, “
Precision Large Scale Air Traffic Surveillance Using an IMM Estimator With Assignment
,”
Trans. IEEE Aerosp. Electron. Syst. J.
,
35
(
1
), pp.
255
266
.
35.
Lin
,
X.
,
Kirubarajan
,
T.
,
Bar-Shalom
,
Y.
, and
Maskell
,
S.
, 2002, “
Comparison of EKF, Pseudomeasurement Filter and Particle Filter for a Bearings-only Target Tracking Problem
,”
Proceedings of the SPIE Conference of Signal and Data Processing of Small Targets
, Orlando, FL.
36.
Hernandez
,
M. L.
,
Kirubarajan
,
T.
, and
Bar-Shalom
,
Y.
, 2004, “
Multisensor Resource Management in the Presence of Clutter Using Cramér-Rao Lower Bounds
,”
IEEE Trans. Aerosp. Electron. Syst.
,
40
(
2
), pp.
399
416
.
37.
Zhang
,
X.
, and
Willett
,
P.
, 2001, “
Cramér-Rao Bounds for Discrete-Time Linear Filtering With Measurement Origin Uncertainties
,”
Proceedings of the Workshop on Estimation
, Tracking and Fusion: A Tribute to Yaakov Bar-Shalom, CA.
38.
Tichavsky
,
P.
, 1998, “
Posterior Cramér-Rao Bounds for Discrete-Time Nonlinear Filtering
,”
IEEE Trans. Signal Process.
,
46
(
5
), pp.
1386
1396
.
39.
Arasaratnam
,
I.
,
Haykin
,
S.
, and
Elliott
,
R. J.
, 2007, “
Discrete-Time Nonlinear Filtering Algorithms Using Gauss-Hermite Quadrature
,”
Proc. IEEE.
,
95
(5)
, pp.
953
977
.
You do not currently have access to this content.