This paper investigates mode-independent stabilization of Markovian jump systems with time-varying delays via a sliding mode approach. A sufficient condition is proposed to guarantee the existence of a mode-independent sliding surface. Because the real plant regime mode is not directly accessible and instantly available, a controller is reconfigured online by calculating a detection function such that the closed-loop system converges to the sliding surface in finite time. A comparison example is presented to illustrate merits of the developed theory.

References

1.
Shi
,
P.
,
Boukas
,
E. K.
, and
Agarwal
,
K.
, 1999, “
Kalman Filtering for Continuous-Time Uncertain Systems With Markovian Jumping Parameters
,”
IEEE Trans. Autom. Control
,
44
(
8
), pp.
1592
1597
.
2.
Dragan
,
V.
, and
Morozan
,
T.
, 2004, “
The Linear Quadratic Optimization Problems for a Class of Linear Stochastic Systems With Multiplicative White Noise and Markovian Jumping
,”
IEEE Trans. Autom. Control
,
49
(
5
), pp.
665
675
.
3.
Mao
,
X.
, and
Yuan
,
C.
, 2006,
Stochastic Differential Equations With Markovian Switching
,
Imperial College Press
,
London
.
4.
Wu
,
H. N.
, and
Bai
,
M. Z.
, 2008, “
H Fuzzy Tracking Control Design for Nonlinear Active Fault Tolerant Control Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
130
(
4
), pp.
1
9
.
5.
Lin
,
Z. W.
,
Lin
,
Y.
, and
Zhang
,
W. H.
, 2009, “
A Unified Design for State and Output Feedback H Control of Nonlinear Stochastic Markovian Jump Systems With State and Disturbance-Dependent Noise
,”
Automatica
,
45
(
12
), pp.
2955
2962
.
6.
Huang
,
R.
, and
Lin
,
Y.
, and
Lin
,
Z. H.
, 2010, “
Robust Fuzzy Tracking Design for a Class of Nonlinear Stochastic Markovian Jump Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
132
(
5
), pp.
1
9
.
7.
Richard
,
J. P.
, 2003, “
Time-Delay Systems: An Overview of Some Recent Advances and Open Problems
,”
Automatica
,
39
(
10
), pp.
1667
1694
.
8.
Shi
,
P.
,
Boukas
,
E. K.
,
Agarwal
,
K.
, 1999, “
Control of Markovian Jump Discrete-Time Systems With Norm Bounded Uncertainty and Unknown Delay
,”
IEEE Trans. Autom. Control
,
44
(
11
), pp.
2139
2144
.
9.
Cao
,
Y.
, and
Lam
,
J.
, 2000, “
Robust H Control of Uncertain Markovian Jump Systems With Time-Delay
,”
IEEE Trans. Autom. Control
,
45
(
1
), pp.
77
83
.
10.
Wang
,
Z. D.
,
Qiao
,
H.
, and
Burnham
,
K. J.
, 2002, “
On Stabilization of Bilinear Uncertain Time-Delay Stochastic Systems With Markovian Jumping Parameters
,”
IEEE Trans. Autom. Control
,
47
(
4
), pp.
640
646
.
11.
Mahmoud
,
M.
and
Shi
,
P.
, 2003, “
Robust Stability, Stabilization and H Control of Time-Delay Systems With Markovian Jump Parameters
,”
Int. J. Robust Nonlinear Control
,
13
(
8
), pp.
755
784
.
12.
Kang
,
Y.
,
Zhang
,
J. F.
, and
Ge
,
S. S.
, 2008, “
Robust Output Feedback H Control of Uncertain Markovian Jump Systems With Mode-Dependent Time-Delays
,”
Int. J. Control
,
81
(
1
), pp.
43
61
.
13.
Utkin
,
V.
, 1992,
Sliding Modes in Control and Optimization
,
Springer
,
Berlin
.
14.
Hung
,
J. Y.
,
Gao
,
W. B.
, and
Hung
,
J. C.
, 1993, “
Variable Structure Control: A Ssurvey
,”
IEEE Trans. Ind. Electron.
,
40
(
1
), pp.
2
22
.
15.
Gao
,
W. B.
,
Hung
,
J. C.
, 1993, “
Variable Structure Control of Nonlinear Systems: A New Approach
,”
IEEE Trans. Ind. Electron.
,
40
(
1
), pp.
45
55
.
16.
Wu
,
L. G.
,
Lam
,
J.
, 2008, “
Sliding Mode Control of Switched Hybrid Systems With Time-Varying Delay
,”
Int. J. Adapt. Control Signal Process.
,
22
(
10
), pp.
909
931
.
17.
Xing
,
H. L.
,
Li
,
D. H.
, and
Zhong
,
X. Z.
, 2009, “
Sliding Mode Control for a Class of Parabolic Uncertain Distributed Parameter Systems With Time-varying Delays
,”
Int. J. Innov. Comput. Inf. Control
,
5
(
9
), pp.
2689
2702
.
18.
Acho
,
L.
, and
Pozo
,
F.
, 2009, “
Sliding Mode Control of Hysteretic Structural Systems
,”
Int. J. Innov. Comput. Inf. Control
,
5
(
4
), pp.
1081
1088
.
19.
Shi
,
P.
,
Xia
,
Y.
,
Liu
,
G. P.
, and
Rees
,
D.
, 2006, “
On Designing of Sliding-Mode Control for Stochastic Jump Systems
,”
IEEE Trans. Autom. Control
,
51
(
1
), pp.
97
103
.
20.
Ma
,
S. P.
, and
Boukas
,
E. K.
, 2009, “
A Singular System Approach to Robust Sliding Mode Control for Uncertain Markov Jump Systems
,”
Automatica
,
45
(
11
), pp.
2707
2713
.
21.
Niu
,
Y. G.
,
Ho
,
D. W. C.
, and
Wang
,
X. Y.
, 2007, “
Sliding Mode Control for Itô Stochastic Systems With Markovian Switching
,”
Automatica
,
43
(
10
), pp.
1784
1790
.
22.
Wu
,
L. G.
, and
Ho
,
D. W. C.
, 2010, “
Sliding Mode Control of Singular Stochastic Hybrid Systems
,”
Automatica
,
46
(
4
), pp.
779
783
.
23.
Wu
,
L. G.
,
Shi
,
P.
, and
Guo
,
H. J.
, 2010, “
State Estimation and Sliding Mode Control of Markovian Jump Singular Systems
,”
IEEE Trans. Autom. Control
,
55
(
5
), pp.
1213
1219
.
24.
Zuo
,
Z. Q.
,
Ho
,
D. W. C.
, and
Wang
,
Y. J.
, 2010, “
Fault Tolerant Control for Singular Systems With Actuator Saturation and Nonlinear Perturbation
,”
Automatica
,
46
(
3
), pp.
569
576
.
25.
Boukas
,
E. K.
, 2008,
Control of Singular Systems With Random Abrupt Changes
,
Springer
,
Berlin
.
26.
Petersen
,
I. R.
, 1987, “
A Stabilization Algorithm for a Class of Uncertain Linear Systems
,”
Syst. Control Lett.
,
8
(
4
), pp.
351
357
.
27.
Niu
,
Y. G.
,
Ho
,
D. W. C.
, and
Wang
,
X. Y.
, 2008, “
Robust H Control for Nonlinear Stochastic Systems: A Sliding-Mode Approach
,”
IEEE Trans. Autom. Control
,
53
(
7
), pp.
1695
1701
.
28.
Huang
,
L. R.
, and
Mao
,
X.
, 2010, “
SMC Design for Robust H Control of Uncertain Stochastic Delay Systems
,”
Automatica
,
46
(
2
), pp.
405
412
.
29.
Kushner
,
H. J.
, 1967,
Stochastic Stability and Control
,
Academic
,
New York
.
30.
He
,
Y.
,
Wang
,
Q. G.
,
Xie
,
L. H.
, and
Lin
,
C.
, 2007, “
Further Improvement of Free-Weighting Matrices Technique for Systems With Time-Varying Delay
,”
IEEE Trans. Autom. Control
,
52
(
2
), pp.
293
299
.
You do not currently have access to this content.