Reset compensation has been used to overcome limitations of linear and time invariant (LTI) compensation. In this work, a new reset compensator, referred to as proportional and integral (PI) + CI (Clegg integrator), is introduced. It basically consists of adding a Clegg integrator to a PI compensator, with the goal of improving the closed loop response by using the nonlinear characteristic of this element. It turns out that by resetting a percentage of the integral term in a PI compensator, a significant improvement can be obtained over a well-tuned PI compensator in some relevant practical cases, such as systems with dominant lag and integrating systems. The work is devoted to the development of PI + CI tuning rules for basic dynamic systems in a wide range of applications, including first and higher order plus dead time systems.

References

1.
Clegg
,
J. C.
, 1958, “
A Nonlinear Integrator for Servomechnisms
,”
Trans. A.I.E.E.m, Part II
,
77
, pp.
41
42
.
2.
Horowitz
,
I. M.
, and
Rosenbaum
,
P.
, 1975, “
Nonlinear Design for Cost of Feedback Reduction in Systems With Large Parameter Uncertainty
,”
Int. J. Control
,
24
(
6
), pp.
977
1001
.
3.
Krishman
,
K. R
, and
Horowitz
,
I. M.
, 1974, “
Synthesis of a Nonlinear Feedback System With Significant Plant-Ignorance for Prescribed System Tolerances
,”
Int. J. Control
,
19
(
4
), pp.
689
706
.
4.
Bainov
,
D. D.
, and
Simeonov
,
P. S.
, 1989,
Systems With Impulse Effect: Stability, Theory and Applications
,
Ellis Horwood
,
Chicester
.
5.
Beker
,
O.
, 2001, “
Analysis of Reset Control Systems
,” Ph.D. thesis, University of Massachusetts Amherst, Amherst, MA.
6.
Åström
,
K. J.
, and
Hägglund
,
T.
, 2001, “
The Future of PID Control
,”
Control Eng. Pract.
,
9
, pp.
1163
1175
.
7.
Zheng
,
Y.
,
Chait
,
Y.
,
Hollot
,
C. V.
,
Steinbuch
,
M.
, and
Norg
,
M.
, 2000, “
Experimental Demonstration of Reset Control Design
,”
Control Eng. Pract.
,
8
, pp.
113
120
.
8.
Bakkeheim
,
J.
,
Smogeli
,
O. N.
,
Johansen
,
T. A.
, and
Sorensen
,
A. J.
, 2006, “
Improved Transient Performance by Lyapunov-Based Reset of PI Thruster Control in Extreme Seas
,”
Proceedings of the IEEE Conference on Decision and Control
, pp.
4052
4057
9.
Wu
,
D.
,
Guo
,
G.
, and
Wang
,
Y.
, 2007, “
Reset Integral-Derivative Control for HDD Servo Systems
,”
IEEE Trans. Control Syst. Technol.
,
15
(
1
), pp.
161
167
.
10.
Zheng
,
J.
,
Guo
,
Y.
,
Fu
,
M.
,
Wang
,
Y.
, and
Xie
,
L.
, 2008, “
Development of an Extended Reset Controller and its Experimental Demonstration
,”
IET Control Theory Appl.
,
2
, pp.
866
874
.
11.
Aangenent
,
W. H. T. M.
,
Witvoet
,
G.
,
Heemels
,
W. P. M. H.
,
van der Molengraft
,
M. J. G.
, and
Steinbuch
,
M.
, 2010, “
Performance Analysis of Reset Control Systems
,”
Int. J. Robust Nonlinear Control
,
20
(
11
), pp.
1213
1233
.
12.
Nešić
,
D.
,
Zaccarian
,
L.
, and
Teel
,
A. R.
, 2008, “
Stability Properties of Reset Systems
,”
Automatica
,
44
(
8
), pp.
2019
2026
.
13.
Nešić
,
D.
,
Teel
,
A. R.
, and
Zaccarian
,
L.
, 2008, “
On Necessary and Sufficient Conditions for Exponential and L2 Stability of Planar Reset Systems
,”
American Control Conference
,
Seattle
.
14.
Hespanha
,
J. P.
,
Liberzon
,
D.
, and
Teel
,
A. R.
, 2008, “
Lyapunov Conditions for Input-to-State Stability of Impulsive Systems
,”
Automatica
,
44
(
11
), pp.
2735
3744
.
15.
Haddad
,
W. M.
,
Chellaboina
,
V.
, and
Nersesov
,
S. G.
, 2006,
Impulsive and Hybrid Dynamical Systems: Stability, Dissipativity, and Control
,
Princeton University
,
Princeton, NJ
.
16.
Heemels
,
W. P.
,
Çaml ibel
,
M. K.
,
van der Schaft
,
A. J.
, and
Schumacher
,
J. M.
, 2003, “
On the Existence an Uniqueness of Solution Trajectories to Hybrid Dynamical Systems
,” in
Nonlinear and hybrid systems in automotive control
Johansson
,
R.
, and
Rantzer
,
A.
, eds.,
Springer
,
London
, pp.
391
421
.
17.
Hespanha
,
J. P.
, and
Morse
,
A. S.
, 2002,“
Switching Between Stabilizing Controllers
,”
Automatica
,
38
(
11
), pp.
1905
1917
.
18.
Barreiro
,
A.
, and
Baños
,
A.
, 2010, “
Delay-Dependent Stability of Reset Systems
,”
Automatica
,
46
(
1
), pp.
216
221
.
19.
Baños
,
A.
, and
Vidal
,
A.
, 2007, “
Definition and Tuning of a PI+CI Reset Controller
,”
Proceedings of the European Control Conference
,
Greece
.
20.
Baños
,
A.
, and
Vidal
,
A.
, 2007, “
Design of PI+CI Reset Compensators for Second Order Plants
,”
Proceedings of the IEEE International Symposium on Industrial Electronic
,
Spain
.
21.
Baños
,
A.
, and
Barreiro
,
A.
, 2009, “
Delay-Independent Stability of Reset Control Systems
,”
IEEE Trans. Autom. Control
,
54
(
2
), pp.
341
346
.
22.
Anokhin
,
A.
,
Berezansky
,
L.
, and
Braverman
,
E.
, 1995, “
Exponential Stability of Linear Delay Impulsive Differential Equations
,”
J. Math. Anal. Appl.
,
193
, pp.
923
941
.
23.
Liberzon
,
D.
, and
Switching in Systems and Control
, 2003,
Birkhauser
,
Cambridge, MA
.
24.
Beker
,
O.
,
Hollot
,
C. V.
,
Chait
,
Y.
, and
Han
,
H.
, 2004, “
Fundamental Properties of Reset Control Systems
,”
Automatica
,
40
, pp.
905
915
.
25.
Michel
,
A. N.
,
Hou
,
L.
, and
Liu
,
D.
, 2008,
Stability of Dynamical Systems: Continuous, Discontinuous and Discrete Systems
,
Birkhauser
,
Cambridge, MA
.
26.
Laksmikantham
,
V.
,
Bainov
,
D. D.
, and
Simeonov
,
P. S.
, 1989,
Theory of Impulsive Differential Equations
,
World Scientific
,
Singapore
.
27.
Liu
,
X.
,
Shen
,
X.
,
Zhang
,
Y.
, and
Wang
,
Q.
, 2007, “
Stability Criteria for Impulsive Systems With Time Delay and Unstable System Matrices
,”
IEEE Trans. Circuits Syst., I: Regul. Pap.
,
54
(
10
), pp.
2288
2298
.
28.
Vidal
,
A.
, and
Baños
,
A.
, 2009, “
Stability of Reset Control Systems With Variable Reset: Application to PI+CI Compensation
,”
Proceedings of the European Control Conference
,
Budapest, Hungary
.
29.
Baños
,
A.
,
Carrasco
,
J.
, and
Barreiro
,
A.
, 2011, “
Reset-Times Dependent Stability of Reset Systems
,”
IEEE Trans. Autom. Control
,
56
(
1
), pp.
217
223
.
30.
Yang
,
T.
, 2001,
Impulsive Control Theory (Lecture Notes in Control and Information Sciences)
,
Springer-Verlag, Berlin
, Vol.
272
.
31.
Smith
,
C. L.
,
Corripio
,
A. B.
, and
Martin
,
J.
, 1975, “
Controller Tuning From Simple Process Models
,”
Instrum. Technol.
,
22
(
12
), pp.
39
44
.
32.
Lee
,
Y.
,
Park
,
S.
,
Lee
,
M.
, and
Brosilow
,
C.
, 1998, “
PID Controller Tuning for Desired Closed-Loop Responses for SI/SO Systems
,”
AIChE J.
,
44
(
1
), p.
106115
.
33.
Rivera
,
D. E.
,
Morari
,
M.
, and
Skogestad
,
S.
, 1986, “
Internal Model Control. 4. PID Controller Design
,”
I&EC Process Des. Dev.
,
25
(
1
), pp.
252
265
.
34.
Skogestad
,
S.
, 2003, “
Simple Analytic Rules for Model Reduction and PID Controller Tuning
,”
J. Process Control
,
13
(
4
), p.
291309
.
35.
Beker
,
O.
,
Hollot
,
C. V.
, and
Chait
,
Y.
, 2001, “
Plant With Integrator: An Example of Reset Control Overcoming Limitations of Linear Feedback
,”
IEEE Trans. Autom. Control
,
46
(
11
), pp.
1797
1799
.
You do not currently have access to this content.