Iterative learning control algorithms have been shown to offer a high level of performance both theoretically and when applied to practical applications. However, the trial-to-trial convergence of the error is generally highly dependent on the initial choice of input applied to the plant. Techniques are therefore developed, which generate an optimal initial input selection, and the effect this has on the error over subsequent trials is examined. Experimental benchmarking is undertaken using a gantry robot test facility.

References

1.
Arimoto
,
S.
,
Kawamura
,
S.
, and
Miyazaki
,
F.
, 1984, “
Bettering Operations of Robots by Learning
,”
J. Rob. Syst.
,
1
, pp.
123
140
.
2.
Bristow
,
D. A.
,
Tharayil
,
M.
, and
Alleyne
,
A. G.
, 2006, “
A Survey of Iterative Learning Control
,”
IEEE Control Syst. Mag.
,
26
(
3
), pp.
96
114
.
3.
Ahn
,
H. -S. H.-S.
,
Chen
,
Y.
, and
Moore
,
K. L.
, 2007, “
Iterative Learning Control: Brief Survey and Categorization
,”
IEEE Trans. Syst. Man Cybern., Part C Appl. Rev.
,
37
(
6
), pp.
1099
1121
.
4.
Hoelzle
,
D. J.
,
Alleyne
,
A. G.
, and
Johnson
,
A. J. W.
, 2009, “
Iterative Learning Control Using a Basis Signal Library
,”
Proceedings of the American Control Conference
,
St. Louis, MO
, pp.
925
930
.
5.
Arif
,
M.
,
Ishihara
,
T.
, and
Inooka
,
H.
, 2001, “
Incorporation of Experience in Iterative Learning Controllers Using Locally Weighted Learning
,”
Automatica
,
37
(
6
), pp.
881
888
.
6.
Arif
,
M.
,
Ishihara
,
T.
, and
Inooka
,
H.
, 2002, “
Experience-Based Iterative Learning Controllers for Robotic Systems
,”
J. Intell. Robotic Syst.
,
35
(
4
), pp.
381
396
.
7.
Ratcliffe
,
J. D.
,
Hätönen
,
J. J.
,
Lewin
,
P. L.
,
Rogers
,
E.
, and
Owens
,
D. H.
, 2007, “
Repetitive Control of Synchronized Operations for Process Applications
,”
Int. J. Adapt. Control Signal Process.
,
21
(
4
), pp.
300
325
.
8.
Owens
,
D. H.
,
Hätönen
,
J. J.
, and
Daley
,
S.
, 2009, “
Robust Monotone Gradient-Based Discrete-Time Iterative Learning Control
,”
Int. J.Robust Nonlinear Control
,
19
, pp.
634
661
.
9.
Longman
,
R. W.
, 2000, “
Iterative Learning Control and Repetitive Control for Engineering Practice
,”
Int. J. Control
,
73
(
10
), pp.
930
954
.
10.
Freeman
,
C. T.
,
Lewin
,
P. L.
,
Rogers
,
E.
,
Hätönen
,
J. J.
, and
Owens
,
D.
, 2009, “
Discrete Fourier Transform Based Iterative Learning Control Design for Linear Plants With Experimental Verification
,”
ASME J. Dyn. Syst., Meas., Control
,
131
(
3
), p.
031006
.
11.
Norrlöf
,
M.
, and
Gunnarsson
,
S.
, 2002, “
Time and Frequency Domain Convergence Properties in Iterative Learning Control
,”
Int. J. Control
,
75
(
14
), pp.
1114
1126
.
12.
Norrlöf
,
M.
, and
Gunnarsson
,
S.
, 1999, “
A Frequency Domain Analysis of a Second Order Iterative Learning Control Algorithm
,”
Proceedings of the 38th Conference on Decision and Control
, pp.
1587
1592
.
13.
Norrlöf
,
M.
, 2000, “
Comparative Study on First and Second Order ILC-Frequency Domain Analysis and Experiments
,”
Proceedings of the 39th IEEE Conference on Decision and Control
, pp.
3415
3420
.
14.
Cai
,
Z.
,
Freeman
,
C. T.
,
Lewin
,
P. L.
, and
Rogers
,
E.
, 2008, “
Iterative Learning Control for a Non-Minimum Phase Plant Based on a Reference Shift Algorithm
,”
Control Eng. Pract.
,
16
(
6
), pp.
633
643
.
You do not currently have access to this content.