This paper applies integrated system modeling and control design process to a continuously variable valve timing (VVT) actuator system that has different control input and cam position feedback sample rates. Due to high cam shaft torque disturbance and high actuator open-loop gain, it is also difficult to maintain the cam phase at the desired constant level with an open-loop controller for system identification. As a result, multirate closed-loop system identification becomes necessary. For this study, a multirate closed-loop system identification method, pseudo-random binary signal q-Markov Cover, was used for obtaining linearized system models of the nonlinear physical system at different engine operational conditions; and output covariance constraint (OCC) controller, an H2 controller, was designed based upon the identified nominal model and evaluated on the VVT test bench. Performance of the designed OCC controller was compared with that of the well-tuned baseline proportional-integral (PI) controller on the test bench. Results show that the OCC controller uses less control effort and has significant lower overshoot than those of PI ones.

1.
Moriya
,
Y.
,
Watanabe
,
A.
,
Uda
,
H.
,
Kawamura
,
H.
,
Yoshiuka
,
M.
, and
Adachi
,
M.
, 1996, “
A Newly Developed Intelligent Variable Valve Timing System-Continuously Controlled Cam Phasing as Applied to New 3 Liter Inline 6 Engine
,” SAE Paper No. 960579.
2.
Dugdale
,
P. H.
,
Rademacher
,
R. J.
,
Price
,
B. R.
,
Subhedar
,
J. W.
, and
Duguay
,
R. L.
, 2005, “
Ecotec 2.4L VVT: A Variant of GM’s Global 4-Cylinder Engine
,” SAE Paper No. 2005-01-1941.
3.
Simpson
,
R.
, 2003, “
Worm Gear Driven Variable Cam Phaser
,” U.S. Patent No. 6622667.
4.
Poole
,
J.
,
Patton
,
J.
, and
Goodwin
,
B.
, 2008, “
Modeling and Simulating a VVT System for Robust Design
,” SAE Paper No. 2008-01-0901.
5.
Gustavsson
,
G. I.
,
Ljung
,
L.
, and
Soderstorm
,
T.
, 1977, “
Identification of Process in Closed-Loop—Identifiability and Accuracy Aspects
,”
Automatica
0005-1098,
13
, pp.
59
75
.
6.
Leskens
,
M.
,
Van Kessel
,
L. B. M.
, and
Van den Hof
,
P. M. J.
, 2002, “
MIMO Closed-Loop Identification of an MSW Incinerator
,”
Control Eng. Pract.
0967-0661,
10
, pp.
315
326
.
7.
Forssell
,
U.
, and
Ljung
,
L.
, 1999, “
Closed-Loop Identification Revisited
,”
Automatica
0005-1098,
35
, pp.
1215
1241
.
8.
Van Den Hof
,
P. M. J.
, and
Schrama
,
R. J. P.
, 1995, “
Identification and Control-Closed-Loop Issues
,”
Automatica
0005-1098,
31
(
12
), pp.
1751
1770
.
9.
Skelton
,
R. E.
, and
Anderson
,
B. D. O.
, 1986, “
Q-Markov Covariance Equivalent Realization
,”
Int. J. Control
0020-7179,
53
(
1
), pp.
1477
1490
.
10.
Liu
,
K.
, and
Skelton
,
R. E.
, 1991, “
Identification and Control of NASA’s ACES Structure
,”
Proceedings of the American Control Conference
, Boston, MA.
11.
Zhu
,
G. G.
,
Skelton
,
R. E.
, and
Li
,
P.
, 1995, “
q-Markov Cover Identification Using Pseudo-Random Binary Signals
,”
Int. J. Control
0020-7179,
62
(
6
), pp.
1273
1290
.
12.
Zhu
,
G.
, 2000, “
Weighted Multirate q-Markov Cover Identification Using PRBS—An Application to Engine Systems
,”
Math. Probl. Eng.
1024-123X,
6
, pp.
201
224
.
13.
Zhu
,
G.
, and
Skelton
,
R. E.
, 1994, “
Integrated Modeling and Control for the Large Spacecraft Laboratory Experiment Facility
,”
J. Guid. Control Dyn.
0731-5090,
17
(
3
), pp.
442
450
.
14.
Zhu
,
G.
,
Grigoriadis
,
K. M.
, and
Skelton
,
R. E.
, 1995, “
Covariance Control Design for Hubble Space Telescope
,”
J. Guid. Control Dyn.
0731-5090,
18
(
2
), pp.
230
236
.
15.
Zhu
,
G.
,
Rotea
,
M. A.
, and
Skelton
,
R.
, 1997, “
A Convergent Algorithm for the Output Covariance Constraint Control Problem
,”
SIAM J. Control Optim.
0363-0129,
35
(
1
), pp.
341
361
.
16.
Ren
,
Z.
, and
Zhu
,
G. G.
, 2009, “
Pseudo-Random Binary Sequence Closed-Loop System Identification Error With Integration Control
,”
Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng.
,
223
, pp.
877
884
.
17.
Codrons
,
B.
,
Anderson
,
B. D. O.
, and
Gevers
,
M.
, 2002, “
Closed-Loop Identification With an Unstable or Nonminimum Phase Controller
,”
Automatica
0005-1098,
38
, pp.
2127
2137
.
18.
Peterson
,
W. W.
, 1961,
Error Correcting Coding
,
MIT Technical Press
,
Cambridge, MA
.
19.
Anderson
,
B. D. O.
, and
Skelton
,
R. E.
, 1988, “
The Generation of All q-Markov Covers
,”
IEEE Trans. Circuits Syst.
0098-4094,
35
(
4
), pp.
375
384
.
20.
King
,
A. M.
,
Desai
,
U. B.
, and
Skelton
,
R. E.
, 1988, “
A Generalized Approach to q-Markov Covariance Equivalent Realization for Discrete Systems
,”
Automatica
0005-1098,
24
(
4
), pp.
507
515
.
21.
Meerkov
,
S.
, and
Runolfsson
,
T.
, 1989, “
Output Residence Time Control
,”
IEEE Trans. Autom. Control
0018-9286,
34
, pp.
1171
1176
.
22.
Wilson
,
D. A.
, 1989, “
Convolution and Hankel Operator Norms for Linear Systems
,”
IEEE Trans. Autom. Control
0018-9286,
34
, pp.
94
97
.
23.
Zhu
,
G.
,
Corless
,
M.
, and
Skelton
,
R.
, 1989, “
Robustness Properties Of Covariance Controllers
,”
Proceedings of the Allerton Conference
, Monticello, IL.
You do not currently have access to this content.