This paper proposes a technique to model uncertainties associated with linear time-invariant systems. It is assumed that the uncertainties are only due to parametric variations caused by independent uncertain variables. By assuming that a set of a finite number of rational transfer functions of a fixed order is given, as well as the number of independent uncertain variables that affect the parametric uncertainties, the proposed technique seeks an optimal parametric uncertainty model as a function of uncertain variables that explains the set of transfer functions. Finding such an optimal parametric uncertainty model is formulated as a noncovex optimization problem, which is then solved by a combination of a linear matrix inequality and a nonlinear optimization technique. To find an initial condition for solving this nonconvex problem, the nonlinear principal component analysis based on the multidimensional principal curve is employed. The effectiveness of the proposed technique is verified through both illustrative and practical examples.

1.
Zhou
,
K.
, and
Doyle
,
J.
, 1998,
Essentials of Robust Control
,
Prentice Hall
,
Upper Saddle River
.
2.
Chen
,
J.
, and
Gu
,
G.
, 2000,
Control-Oriented System Identification: An
H∞ Approach,
Wiley
,
New York
.
3.
Ljung
,
L.
, 1999,
System Identification: Theory for the User
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
4.
Kosut
,
R.
,
Lau
,
M.
,
Boyd
,
S.
,
Inc
,
I.
, and
Santa Clara
,
C.
, 1992, “
Set-Membership Identification of Systems With Parametric and Nonparametric Uncertainty
,”
IEEE Trans. Autom. Control
0018-9286,
37
(
7
), pp.
929
941
.
5.
Jolliffe
,
I.
, 2002,
Principal Component Analysis
,
Springer
,
New York
.
6.
Buckner
,
G.
,
Choi
,
H.
, and
Gibson
,
N.
, 2006, “
Estimating Model Uncertainty Using Confidence Interval Networks: Applications to Robust Control
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
128
, pp.
626
635
.
7.
Chen
,
L.
, and
Ulsoy
,
A.
, 2001, “
Identification of a Driver Steering Model, and Model Uncertainty, From Driving Simulator Data
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
123
, pp.
623
629
.
8.
Kokotovic
,
P.
,
Menini
,
L.
,
Nicosia
,
T.
,
Zaccarian
,
L.
, and
Abdallah
,
C.
, 2006,
Current Trends in Nonlinear Systems and Control
,
Springer
,
New York
.
9.
Nagamune
,
R.
, and
Choi
,
J.
, 2008, “
Parameter Reduction of Nonlinear Least-Squares Estimates via Nonconvex Optimization
,”
American Control Conference
, pp.
1298
1303
.
10.
Nagamune
,
R.
, and
Choi
,
J.
, 2010. “
Parameter Reduction in Estimated Model Sets for Robust Control
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
132
, p.
021002
.
11.
Pintelon
,
R.
, and
Schoukens
,
J.
, 2001,
System Identification: A Frequency Domain Approach
,
IEEE Press
,
New York
.
12.
Broomhead
,
D.
, and
Lowe
,
D.
, 1988,
Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks
,
Royal Signals and Radar Establishment
,
Malvern
.
13.
Harris
,
J.
, 1992,
Algebraic Geometry: A First Course
,
Springer
,
New York
.
14.
Kruger
,
U.
,
Zhang
,
J.
, and
Xie
,
L.
, 2007, “
Developments and Applications of Nonlinear Principal Component Analysis-A Review
,”
Lecture Notes in Computational Science and Engineering
,
58
, pp.
1
43
.
15.
Hastie
,
T.
, 1984, “
Principal Curves and Surfaces
,” Technical Report, SLAC-R-276.
16.
Kramer
,
M.
, 1991, “
Nonlinear Principal Component Analysis Using Autoassociative Neural Networks
,”
AIChE J.
0001-1541,
37
(
2
), pp.
233
243
.
17.
Diamantaras
,
K.
, and
Kung
,
S.
, 1996,
Principal Component Neural Networks: Theory and Applications
,
Wiley
,
New York
.
18.
Scholkopf
,
B.
, and
Smola
,
A.
, 2002,
Learning With Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
,
MIT Press
,
Cambridge, MA
.
19.
Scholkopf
,
B.
,
Smola
,
A.
, and
Muller
,
K.
, 1998, “
Nonlinear Component Analysis as a Kernel Eigenvalue Problem
,”
Neural Comput.
0899-7667,
10
(
5
), pp.
1299
1319
.
20.
Dong
,
D.
, and
McAvoy
,
T.
, 1996, “
Nonlinear Principal Component Analysis Based on Principal Curves and Neural Networks
,”
Comput. Chem. Eng.
0098-1354,
20
(
1
), pp.
65
78
.
21.
Kwok
,
J.
, and
Tsang
,
I.
, 2004, “
The Pre-Image Problem in Kernel Methods
,”
IEEE Trans. Neural Netw.
1045-9227,
15
(
6
), pp.
1517
1525
.
22.
Hastie
,
T.
, and
Stuetzle
,
W.
, 1989, “
Principal Curves
,”
J. Am. Stat. Assoc.
0003-1291,
84
(
406
), pp.
502
516
.
23.
Dem’yanov
,
V.
,
Malozemov
,
V.
, and
Louvish
,
D.
, 1990,
Introduction to Minimax
,
Dover
,
New York
.
24.
Zhang
,
F.
, 2005,
The Schur Complement and Its Applications
,
Springer
,
New York
.
25.
Coleman
,
T.
, and
Li
,
Y.
, 1996, “
An Interior, Trust Region Approach for Nonlinear Minimization Subject to Bounds
,”
SIAM J. Optim.
1052-6234,
6
, pp.
418
445
.
26.
Coleman
,
T.
, and
Li
,
Y.
, 1994, “
On the Convergence of Interior-Reflective Newton Methods for Nonlinear Minimization Subject to Bounds
,”
Math. Program.
0025-5610,
67
(
1–3
), pp.
189
224
.
27.
Nagamune
,
R.
, and
Choi
,
J.
, 2008, “
Parameter Reduction of Nonlinear Least-Squares Estimates via the Singular Value Decomposition
,”
Proceedings of the International Federation of Automatic Control
, pp.
12383
12388
.
28.
Kwiatkowski
,
A.
, and
Werner
,
H.
, 2005, “
Parameter Reduction for LPV Systems via Principle Components Analysis
,”
Proceedings of the International Federation of Automatic Control
.
29.
Apkarian
,
P.
,
Gahinet
,
P.
, and
Becker
,
G.
, 1995, “
Self-Scheduled H∞ Control of Linear Parameter-Varying Systems: A Design Example
,”
Automatica
0005-1098,
31
, pp.
1251
1261
.
You do not currently have access to this content.