This paper presents combined thermal and mechanical models of a wet shape memory alloy (SMA) wire actuator. The actuator consists of a SMA wire suspended concentrically in a compliant tube. Actuation occurs as hot and cold water that are alternately pumped through the tube to contract and extend the wire, respectively. The thermomechanical model presented in this paper accounts for the nonuniform temperature change of the SMA wire due to alternating the temperature of the flow along the wire. The thermal portion of the model consists of analysis of the heat transfer between the fluid and the SMA wire. Heat loss to the environment and the temperature change of the fluid through the actuator are taken into account. Based on this analysis, the temperature of the wire at segments along its length can be determined as a function of time. The mechanical portion of the model approximates the strain-martensite fraction and martensite fraction-temperature relationships. By combining the thermal and mechanical models, the displacement of the wire can be determined as a function of time. The combined thermomechanical model will be useful for predicting the performance of wet SMA actuators in a variety of applications.

1.
Vander
,
A. J.
,
Sherman
,
J. H.
, and
Luciano
,
D. S.
, 2001,
Human Physiology: The Mechanisms of Body Function
, 8th ed.,
McGraw-Hill
,
Boston
.
2.
Weiss
,
C.
, 1983,
Human Physiology
,
Spring-Verlag
,
Berlin
.
3.
Garcia-Cordova
,
F.
,
Lopez-Coronado
,
J.
, and
Guerrero-Gonzalez
,
A.
, 1999, “
Design of an Anthropomorphic Finger Using Shape Memory Alloy Springs
,”
Proceedings of the 1999 IEEE International Conference on Systems, Man, and Cybernetics
, pp.
794
799
.
4.
Kobayashi
,
H.
,
Akasawa
,
H.
, and
Hara
,
F.
, 1999, “
Study on New Face Robot Platform for Robot-Human Communication
,”
Proceedings of the 1999 IEEE International Robot and Human Communication Workshop
, pp.
242
247
.
5.
Pfeiffer
,
C.
,
DeLaurentis
,
K.
, and
Mavroidis
,
C.
, 1999, “
Shape Memory Alloy Actuated Robot Prostheses: Initial Experiments
,”
Proceedings of the 1999 IEEE International Conference on Robotics and Automation
, pp.
2385
2391
.
6.
Pfeiffer
,
C.
,
Mavroidis
,
C.
,
DeLaurentis
,
K.
, and
Mosley
,
M.
, 1999, “
Shape Memory Alloy Actuated Robot Protheses: Initial Prototypes
,”
Proceedings of the 1999 American Society of Mechanical Engineers, Bioengineering Division
, pp.
145
146
.
7.
Andrianesis
,
K.
, and
Tzes
,
A.
, 2008, “
Design of an Anthropomorphic Prosthetic Hand Driven by Shape Memory Alloy Actuators
,”
Proceedings of the Second Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2008
, pp.
517
522
.
8.
Dutta
,
T.
, and
Chau
,
T.
, 2003, “
A Feasibility Study of Flexinol as the Primary Actuator in a Prosthetic Hand
,”
Proceedings of the CCECE 2003—Canadian Conference on Electrical and Computer Engineering
, pp.
1449
1452
.
9.
O’Toole
,
K. T.
,
McGrath
,
M. M.
, and
Hatchett
,
D. W.
, 2007, “
Transient Characterisation and Analysis of Shape Memory Alloy Wire Bundels for the Actuation of Finger Joints in Prosthesis Design
,”
Mechanika
1392-1207,
68
(
6
), pp.
65
69
.
10.
Ikuta
,
K.
,
Tsukamoto
,
M.
, and
Hirose
,
S.
, 1988, “
Shape Memory Alloy Servo Actuator System With Electric Resistance Feedback and Application for Active Endoscope
,”
Proceedings of the 1988 IEEE International Conference on Robotics and Automation
, pp.
427
430
.
11.
Kim
,
B.
,
Lee
,
S.
,
Park
,
J. H.
, and
Park
,
J.
, 2005, “
Design and Fabrication of a Locomotive Mechanism for Capsule-Type Endoscopes Using Shape Memory Alloys (SMAs)
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
10
(
1
), pp.
77
86
.
12.
Taylor
,
P. M.
,
Moser
,
A.
, and
Creed
,
A.
, 1997, “
Design and Control of a Tactile Display Based on Shape Memory Alloys
,”
Proceedings of the 1997 IEEE International Conference on Robotics and Automation
, pp.
1318
1323
.
13.
Tachi
,
S.
,
Nakatani
,
M.
,
Kajimoto
,
H.
,
Vlack
,
K.
,
Sekijuchi
,
D.
, and
Kawakami
,
N.
, 2005, “
Control Method for a 3D Form Display With Coil-Type Shape Memory Alloy
,”
Proceedings of the 2005 IEEE International Conference on Robotics and Automation
, pp.
1344
1349
.
14.
Nakamura
,
M.
, and
Jones
,
L.
, 2003, “
An Actuator for the Tactile Vest-a Torso-Based Haptic Device
,”
Proceedings of the 11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
, pp.
333
339
.
15.
Duerig
,
T. W.
,
Melton
,
K. N.
,
Stockel
,
D.
, and
Wayman
,
C. M.
, 1990,
Engineering Aspects of Shape Memory Alloys
,
Buttersworth-Heinemann
,
London
.
16.
Otsuka
,
K.
, and
Wayman
,
C. M.
, 1998,
Shape Memory Materials
,
Cambridge University
,
Cambridge, MA
.
17.
Roy
,
B.
, and
Asada
,
H.
, 2005, “
Design of a Reconfigurable Robot Arm for Assembly Operations Inside an Aircraft Wing Box
,”
Proceedings of the 2005 IEEE International Conference on Robotics and Automation
, pp.
590
595
.
18.
Peng
,
F.
,
Jiang
,
X.
,
Hu
,
Y.
, and
Ng
,
A.
, 2005, “
Application of Shape Memory Alloy Actuators in Active Shape Control Of Inflatable Space Structures
,”
Proceedings of the 2005 IEEE Aerospace Conference
, pp.
1
10
.
19.
Liu
,
C. Y.
, and
Liao
,
W. H.
, 2004, “
A Snake Robot Using Shape Memory Alloys
,”
Proceedings of the 2004 IEEE International Conference on Robotics and Biomimetics
, pp.
601
605
.
20.
Yu
,
H.
, 2005, “
A Novel In-Pipe Robot Based on SMA
,”
Proceedings of the 2005 IEEE International Conference on Mechatronics and Automation
, pp.
923
927
.
21.
Rediniotis
,
O. K.
, and
Lagoudas-Dimitris
,
D. C.
, 2002, “
Fuel-Powered Compact SMA Actuator
,”
Proceedings of the 2002 SPIE Conference on Smart Structures and Materials
, Vol.
4698
, pp.
441
453
.
22.
Mascaro
,
S. A.
, and
Asada
,
H.
, 2003, “
Wet Shape Memory Alloy Actuators for Active Vasculated Robotic Flesh
,”
Proceedings of the 2003 IEEE International Conference on Robotics and Automation
, Vol.
1
, pp.
282
287
.
23.
Flemming
,
L. J.
, and
Mascaro
,
S. A.
, 2005, “
Wet SMA Actuator Array With Matrix Vasoconstriction Device
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition
, pp.
1751
1758
.
24.
Tobushi
,
H.
,
Tanaka
,
K.
,
Kimura
,
K.
,
Hori
,
T.
, and
Sawada
,
T.
, 1992, “
Stress-Strain-Temperature Relationship Associated With the R-Phase Transformation in TiNi Shape Memory Alloy
,”
JSME Int. J., Ser. I
0914-8809,
35
(
3
), pp.
278
284
.
25.
Liang
,
C.
, and
Rogers
,
C. A.
, 1997, “
One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
8
, pp.
285
302
.
26.
Wu
,
K. H.
,
Shi
,
J. D.
,
Yang
,
F.
, and
Pu
,
Z. J.
, 1996, “
Kinetic Model of Thermoelastic Martensite Transformation in NiTi and NiMn Based Shape Memory Alloys
,”
Mater. Res. Soc. Symp. Proc.
0272-9172,
398
, pp.
537
542
.
27.
Bhattacharyya
,
A.
, and
Lagoudas
,
D. C.
, 1997, “
A Stochastic Thermodynamic Model for the Gradual Thermal Transformation of SMA Polycrystals
,”
Smart Mater. Struct.
0964-1726,
6
(
3
), pp.
235
250
.
28.
Dutta
,
M. S.
, and
Ghorbel
,
F. H.
, 2005, “
Differential Hysteresis Modeling of a Shape Memory Alloy Wire Actuator
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
10
(
2
), pp.
189
197
.
29.
Movchan
,
A. A.
,
Shelymagin
,
P. V.
, and
Kazarina
,
S. A.
, 2001, “
Constitutive Equations for Two-Step Thermoelastic Phase Transformations
,”
J. Appl. Mech. Tech. Phys.
0021-8944,
42
(
5
), pp.
864
871
.
30.
Ren
,
J.
,
Liew
,
K. M.
, and
Meguid
,
S. A.
, 2001, “
Nonlinear FE Analysis of the Hysteresis Behavior of SMA
,”
Int. J. Comput. Eng. Sci.
1465-8763,
2
(
4
), pp.
621
632
.
31.
Flemming
,
L.
, and
Mascaro
,
S.
, 2009, “
Analysis of Hybrid Electric/Thermofluidic Control for Wet Shape Memory Alloy Actuators
,”
ASME
Paper No. DSCC2009-2777.
32.
Humbeeck
,
J. V.
, 1996, “
Damping Properties of Shape Memory Alloys During Phase Transformation
,”
J. Phys. IV
1155-4339,
6
, pp.
371
380
.
33.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 2002,
Fundamentals of Heat and Mass Transfer
, 5th ed.,
Wiley
,
New York
.
You do not currently have access to this content.