This technical brief shows that given a system and its abstraction, the evolution of uncertain initial conditions in the original system is, in some sense, matched by the evolution of the uncertainty in the abstracted system. In other words, it is shown that the concept of -related vector fields extends to the case of stochastic initial conditions where the probability density function (pdf) for the initial conditions is known. In the deterministic case, the mapping commutes with the system dynamics. In this paper, we show that in the case of stochastic initial conditions, the induced mapping commutes with the evolution of the pdf according to the Liouville equation.
Issue Section:
Technical Briefs
1.
Caines
, P.
, and Wei
, Y.
, 1995, “The Hierarchical Lattices of a Finite State Machine
,” Syst. Control Lett.
0167-6911, 25
, pp. 257
–263
.2.
Aoki
, M.
, 1968, “Control of Large Scale Dynamic Systems by Aggregation
,” IEEE Trans. Autom. Control
0018-9286, 13
(3
), pp. 246
–253
.3.
Wong
, K.
, and Wonham
, W.
, 1996, “Hierarchical Control of Discrete-Event Systems
,” Discrete Event Dyn. Syst.
0924-6703, 6
, pp. 241
–273
.4.
Caines
, P.
, and Wei
, Y.
, 1996, “Hierarchical Hybrid Control Systems
,” Control Using Logic Based Switching (Lecture Notes in Control and Information Sciences)
, S.
Morse
, ed., Springer-Verlag
, New York
, Vol. 222
, pp. 39
–48
.5.
Caines
, P.
, and Wei
, Y.
, 1998, “Hierarchical Hybrid Control Systems
,” IEEE Trans. Autom. Control
0018-9286, 43
(4
), pp. 501
–508
.6.
Pappas
, G.
, Lafferriere
, G.
, and Sastry
, S.
, 2000, “Hierarchically Consistent Control Systems
,” IEEE Trans. Autom. Control
0018-9286, 45
(6
), pp. 1144
–1160
.7.
Rubinstein
, R.
, 1981, Simulation and the Monte Carlo Method
, Wiley
, New York
.8.
Xiu
, D.
, and Karniadakis
, G.
, 2002, “The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations
,” SIAM J. Sci. Comput. (USA)
1064-8275, 24
(2
), pp. 619
–644
.9.
Ghanem
, R.
, Masri
, S.
, Pellissetti
, M.
, and Wolfe
, R.
, 2005, “Identification and Prediction of Stochastic Dynamical Systems in a Polynomial Chaos Basis
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 194
, pp. 1641
–1654
.10.
Ehrendorfer
, M.
, 1994, “The Liouville Equation and Its Potential Usefulness for the Prediction of Forecast Skill. Part I: Theory
,” Mon. Weather Rev.
0027-0644, 122
(4
), pp. 703
–713
.11.
Julius
, A.
, Girard
, A.
, and Pappas
, G.
, 2006, “Approximate Bisimulation for a Class of Stochastic Hybrid Systems
,” Proceedings of the 2006 American Control Conference
, pp. 4724
–4729
.12.
Pappas
, G.
, 2003, “Bisimilar Linear Systems
,” Automatica
0005-1098, 39
(12
), pp. 2035
–2047
.13.
van der Schaft
, A.
, 2004, “Equivalence of Dynamical Systems by Bisimulation
,” IEEE Trans. Autom. Control
0018-9286, 49
(12
), pp. 2160
–2172
.14.
Mellodge
, P.
, and Kachroo
, P.
, 2008, Model Abstraction in Dynamical Systems: Application to Mobile Robot Control
, Springer-Verlag
, Berlin
.15.
Ehrendorfer
, M.
, 1994, “The Liouville Equation and Prediction of Forecast Skill
,” Predictability and Nonlinear Modeling in Natural Sciences and Economics
, J.
Grasman
and G.
Straten
, eds., Kluwer
, Dordrecht, The Netherlands
, pp. 29
–44
.16.
Nijmeijer
, H.
, and van der Schaft
, A.
, 1990, Nonlinear Dynamical Control Systems
, Springer-Verlag
, New York
.Copyright © 2010
by American Society of Mechanical Engineers
You do not currently have access to this content.