This technical brief shows that given a system and its abstraction, the evolution of uncertain initial conditions in the original system is, in some sense, matched by the evolution of the uncertainty in the abstracted system. In other words, it is shown that the concept of Φ-related vector fields extends to the case of stochastic initial conditions where the probability density function (pdf) for the initial conditions is known. In the deterministic case, the Φ mapping commutes with the system dynamics. In this paper, we show that in the case of stochastic initial conditions, the induced mapping Φpdf commutes with the evolution of the pdf according to the Liouville equation.

1.
Caines
,
P.
, and
Wei
,
Y.
, 1995, “
The Hierarchical Lattices of a Finite State Machine
,”
Syst. Control Lett.
0167-6911,
25
, pp.
257
263
.
2.
Aoki
,
M.
, 1968, “
Control of Large Scale Dynamic Systems by Aggregation
,”
IEEE Trans. Autom. Control
0018-9286,
13
(
3
), pp.
246
253
.
3.
Wong
,
K.
, and
Wonham
,
W.
, 1996, “
Hierarchical Control of Discrete-Event Systems
,”
Discrete Event Dyn. Syst.
0924-6703,
6
, pp.
241
273
.
4.
Caines
,
P.
, and
Wei
,
Y.
, 1996, “
Hierarchical Hybrid Control Systems
,”
Control Using Logic Based Switching (Lecture Notes in Control and Information Sciences)
,
S.
Morse
, ed.,
Springer-Verlag
,
New York
, Vol.
222
, pp.
39
48
.
5.
Caines
,
P.
, and
Wei
,
Y.
, 1998, “
Hierarchical Hybrid Control Systems
,”
IEEE Trans. Autom. Control
0018-9286,
43
(
4
), pp.
501
508
.
6.
Pappas
,
G.
,
Lafferriere
,
G.
, and
Sastry
,
S.
, 2000, “
Hierarchically Consistent Control Systems
,”
IEEE Trans. Autom. Control
0018-9286,
45
(
6
), pp.
1144
1160
.
7.
Rubinstein
,
R.
, 1981,
Simulation and the Monte Carlo Method
,
Wiley
,
New York
.
8.
Xiu
,
D.
, and
Karniadakis
,
G.
, 2002, “
The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
24
(
2
), pp.
619
644
.
9.
Ghanem
,
R.
,
Masri
,
S.
,
Pellissetti
,
M.
, and
Wolfe
,
R.
, 2005, “
Identification and Prediction of Stochastic Dynamical Systems in a Polynomial Chaos Basis
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
194
, pp.
1641
1654
.
10.
Ehrendorfer
,
M.
, 1994, “
The Liouville Equation and Its Potential Usefulness for the Prediction of Forecast Skill. Part I: Theory
,”
Mon. Weather Rev.
0027-0644,
122
(
4
), pp.
703
713
.
11.
Julius
,
A.
,
Girard
,
A.
, and
Pappas
,
G.
, 2006, “
Approximate Bisimulation for a Class of Stochastic Hybrid Systems
,”
Proceedings of the 2006 American Control Conference
, pp.
4724
4729
.
12.
Pappas
,
G.
, 2003, “
Bisimilar Linear Systems
,”
Automatica
0005-1098,
39
(
12
), pp.
2035
2047
.
13.
van der Schaft
,
A.
, 2004, “
Equivalence of Dynamical Systems by Bisimulation
,”
IEEE Trans. Autom. Control
0018-9286,
49
(
12
), pp.
2160
2172
.
14.
Mellodge
,
P.
, and
Kachroo
,
P.
, 2008,
Model Abstraction in Dynamical Systems: Application to Mobile Robot Control
,
Springer-Verlag
,
Berlin
.
15.
Ehrendorfer
,
M.
, 1994, “
The Liouville Equation and Prediction of Forecast Skill
,”
Predictability and Nonlinear Modeling in Natural Sciences and Economics
,
J.
Grasman
and
G.
Straten
, eds.,
Kluwer
,
Dordrecht, The Netherlands
, pp.
29
44
.
16.
Nijmeijer
,
H.
, and
van der Schaft
,
A.
, 1990,
Nonlinear Dynamical Control Systems
,
Springer-Verlag
,
New York
.
You do not currently have access to this content.