Control can enable high-bandwidth nanopositioning needed to increase the operating speed of scanning probe microscopes (SPMs). High-speed SPMs can substantially impact the throughput of a wide range of emerging nanosciences and nanotechnologies. In particular, inversion-based control can find the feedforward input needed to account for the positioning dynamics and, thus, achieve the required precision and bandwidth. This article reviews inversion-based feedforward approaches used for high-speed SPMs such as optimal inversion that accounts for model uncertainty and inversion-based iterative control for repetitive applications. The article establishes connections to other existing methods such as zero-phase-error-tracking feedforward and robust feedforward. Additionally, the article reviews the use of feedforward in emerging applications such as SPM-based nanoscale combinatorial-science studies, image-based control for subnanometer-scale studies, and imaging of large soft biosamples with SPMs.

1.
Binnig
,
G.
, and
Rohrer
,
H.
, 1982, “
Scanning Tunneling Microscopy
,”
Helv. Phys. Acta
0018-0238,
55
, pp.
726
735
.
2.
Binnig
,
G.
,
Quate
,
C. F.
, and
Gerber
,
C.
, 1986, “
Atomic Force Microscope
,”
Phys. Rev. Lett.
0031-9007,
56
(
9
), pp.
930
933
.
3.
1994,
Scanning Probe Microscopy and Spectroscopy
,
R.
Wiesendanger
, ed.,
Cambridge University Press
,
Cambridge
.
4.
Vettiger
,
P.
,
Staufer
,
U.
, and
Kern
,
D. P.
, 1996, “
Special Issue on Nanotechnology–Preface
,”
Microelectron. Eng.
0167-9317,
31
, pp.
1
2
.
5.
Gentili
,
M.
,
Giovannella
,
C.
, and
Selci
,
S.
, eds. 1993, “
Nanolithography: A Borderland Between STM, EB, IB and X-Ray Lithographies
,”
NATO ASI Series E: Applied Science
, Vol.
264
,
Kluwer Academic Publishers
.
6.
Whitesides
,
G. M.
, and
Love
,
H. C.
, 2001, “
The Art of Building Small
,”
Sci. Am.
0036-8733,
285
(
3
), pp.
39
47
.
7.
Kalinin
,
S. V.
, and
Bonnell
,
D. A.
, 2000, “
Effect of Phase Transition on the Surface Potential of the BaTiO3
,”
J. Appl. Phys.
0021-8979,
87
(
8
), pp.
3950
3957
.
8.
Leang
,
K. K.
, and
Devasia
,
S.
, 2006, “
Design of Hysteresis-Compensating Iterative Learning Control: Application to Atomic Force Microscopes
,”
Mechatronics
0957-4158,
16
(
3–4
), pp.
141
158
.
9.
Bashash
,
S.
, and
Jalili
,
N.
, 2008, “
A Polynomial-Based Linear Mapping Strategy for Feedforward Compensation of Hysteresis in Piezoelectric Actuators
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
130
(
3
), p.
031008
.
10.
Barrett
,
R. C.
, and
Quate
,
C. F.
, 1991, “
Optical Scan-Correction System Applied to Atomic Force Microscopy
,”
Rev. Sci. Instrum.
0034-6748,
62
(
6
), pp.
1393
1399
.
11.
Devasia
,
S.
,
Eleftheriou
,
E.
, and
Moheimani
,
S. O. R.
, 2007, “
A Survey of Control Issues in Nanopositioning
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
15
(
5
), pp.
802
823
.
12.
Croft
,
D.
, and
Devasia
,
S.
, 1999, “
Vibration Compensation for High Speed Scanning Tunneling Microscopy
,”
Rev. Sci. Instrum.
0034-6748,
70
(
12
), pp.
4600
4605
.
13.
Alexander
,
S.
,
Hellemans
,
L.
,
Marti
,
O.
,
Schneir
,
J.
,
Elings
,
V.
,
Hansma
,
P. K.
,
Longmire
,
M.
, and
Gurley
,
J.
, 1989, “
An Atomic-Resolution Atomic-Force Microscope Implemented Using an Optical Lever
,”
J. Appl. Phys.
0021-8979,
65
(
1
), pp.
164
167
.
14.
Pearce
,
R.
, and
Vancso
,
G. J.
, 1998, “
Real-Time Imaging of Melting and Crystallization in Poly(Ethylene Oxide) by Atomic Force Microscopy
,”
Polymer
0032-3861,
39
(
5
), pp.
1237
1242
.
15.
Li
,
L.
,
Chan
,
C. -M.
,
Yeung
,
K. L.
,
Li
,
J. -X.
,
Ng
,
K. -M.
, and
Lei
,
Y.
, 2001, “
Direct Observation of Growth of Lamellae and Spherulites of a Semicrystalline Polymer by AFM
,”
Macromolecules
0024-9297,
34
(
2
), pp.
316
325
.
16.
Beekmans
,
L. G. M.
,
van der Meer
,
D. W.
, and
Vancso
,
G. J.
, 2002, “
Crystal Melting and Its Kinetics on Poly(Ethylene Oxide) by In Situ Atomic Force Microscopy
,”
Polymer
0032-3861,
43
(
6
), pp.
1887
1895
.
17.
Evans
,
E.
, and
Ritchie
,
K.
, 1997, “
Dynamic Strength of Molecular Adhesion Bonds
,”
Biophys. J.
0006-3495,
72
(
4
), pp.
1541
1555
.
18.
Stipe
,
B. C.
,
Rezaei
,
M. A.
, and
Ho
,
W.
, 1998, “
Single-Molecule Vibrational Spectroscopy
,”
Science
0036-8075,
280
, pp.
1732
1735
.
19.
Wilder
,
K.
,
Soh
,
H. T.
,
Atalar
,
A.
, and
Quate
,
C. F.
, 1999, “
Nanometer-Scale Patterning and Individual Current Controlled Lithography Using Multiple Scanning Probes
,”
Rev. Sci. Instrum.
0034-6748,
70
, pp.
2822
2827
.
20.
Minne
,
S. C.
,
Yaraliuglu
,
G.
,
Manalis
,
S. R.
,
Adams
,
J. D.
,
Zesch
,
J.
,
Atalar
,
A.
, and
Quate
,
C. F.
, 1998, “
Automated Parallel High-Speed Atomic Force Microscopy
,”
Appl. Phys. Lett.
0003-6951,
72
(
18
), pp.
2340
2342
.
21.
Lozanne
,
A. L. D.
,
Smith
,
W. F.
, and
Ehrichs
,
E. E.
, 1993, “
Direct Writing With a Combined STM/SEM System
,”
Proceedings of NATO Advanced Workshop on Nanolithography: A Borderland between STM, EB, IB, and X-ray Lithographies
,
NATO ASI Series E, Applied Science
, Vol.
264
, pp.
159
174
.
22.
Aizenberg
,
J.
,
Black
,
A. J.
, and
Whitesides
,
G. M.
, 1999, “
Control of Crystal Nucleation by Patterned Self-Assembled Monolayers
,”
Nature (London)
0028-0836,
398
, pp.
495
498
.
23.
Coffey
,
D. C.
, and
Ginger
,
D. S.
, 2005, “
Patterning Phase Separation in Polymer Films With Dip-Pen Nanolithography
,”
J. Am. Chem. Soc.
0002-7863,
127
, pp.
4564
4565
.
24.
Chung
,
S. W.
,
Ginger
,
D. S.
,
Morales
,
M.
,
Zhang
,
Z.
,
Chandrasekhar
,
V.
,
Ratner
,
M. A.
, and
Mirkin
,
C. A.
, 2005, “
Top-Down Meets Bottom-Up: Dip-Pen Nanolithography and DNA-Directed Assembly of Nanoscale Electrical Circuits
,”
Small
1613-6810,
1
, pp.
64
69
.
25.
Park
,
C.
,
Yoon
,
J.
, and
Thomas
,
E. L.
, 2003, “
Enabling Nanotechnology With Self Assembled Block Copolymer Patterns
,”
Polymer
0032-3861,
44
(
22
), pp.
6725
6760
.
26.
Stark
,
R. W.
,
Schitter
,
G.
, and
Stemmer
,
A.
, 2004, “
Velocity Dependent Friction Laws in Contact Mode Atomic Force Microscopy
,”
Ultramicroscopy
0304-3991,
100
(
3–4
), pp.
309
317
.
27.
Tien
,
S.
,
Zou
,
Q.
, and
Devasia
,
S.
, 2005, “
Iterative Control of Dynamics-Coupling-Caused Errors in Piezoscanners During High-Speed AFM Operation
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
13
(
6
), pp.
921
931
.
28.
Avouris
,
P.
,
Hertel
,
T.
, and
Martel
,
R.
, 1997, “
Atomic Force Microscope Tip-Induced Local Oxidation of Silicon: Kinetics, Mechanism, and Nanofabrication
,”
Appl. Phys. Lett.
0003-6951,
71
, pp.
285
287
.
29.
Dubois
,
E.
, and
Bubendorff
,
J. L.
, 2000, “
Kinetics of Scanned Probe Oxidation: Space-Charge Limited Growth
,”
J. Appl. Phys.
0021-8979,
87
(
11
), pp.
8148
8154
.
30.
Croft
,
D.
,
Shedd
,
G.
, and
Devasia
,
S.
, 2001, “
Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
123
(
1
), pp.
35
43
.
31.
Clayton
,
G. M.
,
Tien
,
S.
,
Fleming
,
A. J.
,
Moheimani
,
S. O. R.
, and
Devasia
,
S.
, 2008, “
Inverse Feedforward of Charge Controlled Piezopositioners
,”
Mechatronics
0957-4158,
18
(
5–6
), pp.
273
281
.
32.
Ashhab
,
M.
,
Salapaka
,
M.
,
Dahleh
,
M.
, and
Mezic
,
I.
, 1999, “
Melnikov-Based Dynamical Analysis of Microcantilevers in Scanning Probe Microscopy
,”
Nonlinear Dyn.
0924-090X,
20
(
3
), pp.
197
220
.
33.
El Rifai
,
O. M.
, and
Youcef-Toumi
,
K.
, 2001, “
In-Contact Dynamics of Atomic Force Microscopes
,”
Proceedings of the 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
, Jul. 8–12, Vol.
2
, pp.
1325
1328
.
34.
Basak
,
S.
,
Raman
,
A.
, and
Garimella
,
S. V.
, 2006, “
Hydrodynamic Loading of Microcantilevers Vibrating in Viscous Fluids
,”
J. Appl. Phys.
0021-8979,
99
, p.
114906
.
35.
El Rifai
,
O. M.
, and
Youcef-Toumi
,
K.
, 2001, “
Coupling in Piezoelectric Tube Scanners Used in Scanning Probe Microscopes
,”
Proceedings of the 2001 American Control Conference
, Arlington, VA, Jun. 25–27, Vol.
4
, pp.
3251
3255
.
36.
Salapaka
,
S.
,
De
,
T.
, and
Sebastian
,
A.
, 2005, “
Sample-Profile Estimate for Fast Atomic Force Microscopy
,”
Appl. Phys. Lett.
0003-6951,
87
(
5
), p.
053112
.
37.
Shegaonkar
,
A. C.
, and
Salapaka
,
S. M.
, 2007, “
Feedback Based Simultaneous Correction of Imaging Artifacts Due to Geometrical and Mechanical Cross-Talk and Tip-Sample Stick in Atomic Force Microscopy
,”
Rev. Sci. Instrum.
0034-6748,
78
, p.
103706
.
38.
Li
,
Y.
, and
Bechhoefer
,
J.
, 2007, “
Feedforward Control of a Closed-Loop Piezoelectric Translation Stage for Atomic Force Microscope
,”
Rev. Sci. Instrum.
0034-6748,
78
(
1
), pp.
013702
.
39.
Barrett
,
R. C.
, and
Quate
,
C. F.
, 1991, “
High-Speed, Large-Scale Imaging With the Atomic Force Microscope
,”
J. Vac. Sci. Technol. B
1071-1023,
9
(
2
), pp.
302
306
.
40.
Kuipers
,
L.
,
Loos
,
R. W. M.
,
Neerings
,
H.
,
ter Horst
,
J.
,
Ruwiel
,
G. J.
,
de Jongh
,
A. P.
, and
Frenken
,
J. W. M.
, 1995, “
Design and Performance of a High Temperature, High-Speed Scanning Tunneling Microscope
,”
Rev. Sci. Instrum.
0034-6748,
66
(
9
), pp.
4557
4565
.
41.
Nakakura
,
C. Y.
,
Phanse
,
V. M.
,
Zheng
,
G.
,
Bannon
,
G.
,
Altman
,
E. I.
, and
Lee
,
K. P.
, 1998, “
A High-Speed Variable-Temperature Ultrahigh Vacuum Scanning Tunneling Microscope
,”
Rev. Sci. Instrum.
0034-6748,
69
(
9
), pp.
3251
3258
.
42.
Schitter
,
G.
,
Aström
,
K. J.
,
DeMartini
,
B. E.
,
Thurner
,
P. J.
,
Turner
,
K. L.
, and
Hansma
,
P. K.
, 2007, “
Design and Modeling of a High-Speed AFM-Scanner
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
15
(
5
), pp.
906
915
.
43.
Ando
,
T.
,
Kodera
,
N.
,
Takai
,
E.
,
Maruyama
,
D.
,
Saito
,
K.
, and
Toda
,
A.
, 2001, “
A High-Speed Atomic Force Microscope for Studying Biological Macromolecules
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
98
(
22
), pp.
12468
12472
.
44.
Rost
,
M. J.
,
Crama
,
L.
,
Schakel
,
P.
,
Tol
,
E. V.
,
Velzen-Williams
,
G. B. E. M. V.
,
Overgauw
,
C. F.
,
Horst
,
H. T.
,
Dekker
,
H.
,
Okhuijsen
,
B.
,
Seynen
,
M.
,
Vijftigschild
,
A.
,
Han
,
P.
,
Katan
,
A. J.
,
Schoots
,
K.
,
Schumm
,
R.
,
Loo
,
W. V.
,
Oosterkamp
,
T. H.
, and
Frenken
,
J. W. M.
, 2005, “
Scanning Probe Microscopes Go Video Rate and Beyond
,”
Rev. Sci. Instrum.
0034-6748,
76
(
5
), p.
053710
.
45.
Shao
,
Z.
,
Mou
,
J.
,
Czajkowsky
,
D. M.
,
Yang
,
J.
, and
Yuan
,
J. -Y.
, 1996, “
Biological Atomic Force Microscopy: What Is Achieved and What Is Needed
,”
Adv. Phys.
0001-8732,
45
(
1
), pp.
1
86
.
46.
Viani
,
M. B.
,
Schaffer
,
T. E.
,
Chand
,
A.
,
Rief
,
M.
,
Gaub
,
H. E.
, and
Hansma
,
P. K.
, 1999, “
Small Cantilevers for Force Spectroscopy of Single Molecules
,”
J. Appl. Phys.
0021-8979,
86
(
4
), pp.
2258
2262
.
47.
Viani
,
M. B.
,
Schäffer
,
T. E.
,
Paloczi
,
G. T.
,
Pietrasanta
,
L. I.
,
Smith
,
B. L.
,
Thompson
,
J. B.
,
Rief
,
M.
,
Gaub
,
H. E.
,
Plaxco
,
K. W.
,
Cleland
,
A. N.
,
Hansma
,
H. G.
, and
Hansma
,
P. K.
, 1999, “
Fast Imaging and Fast Force Spectroscopy of Single Biopolymers With a New Atomic Force Microscope Designed for Small Cantilever
,”
Rev. Sci. Instrum.
0034-6748,
70
(
11
), pp.
4300
4303
.
48.
Koops
,
R.
, and
Sawatzky
,
G. A.
, 1992, “
New Scanning Device for Scanning Tunneling Microscope Applications
,”
Rev. Sci. Instrum.
0034-6748,
63
(
8
), pp.
4008
4009
.
49.
Sulchek
,
T.
,
Hsieh
,
R.
,
Adams
,
J. D.
,
Minne
,
S. C.
,
Quate
,
C. F.
, and
Adderton
,
D. M.
, 2000, “
High-Speed Atomic Force Microscopy in Liquid
,”
Rev. Sci. Instrum.
0034-6748,
71
(
5
), pp.
2097
2099
.
50.
Chen
,
C. J.
, 1992, “
Electromechanical Deflections of Piezoelectric Tubes With Quartered Electrodes
,”
Appl. Phys. Lett.
0003-6951,
60
(
1
), pp.
132
134
.
51.
Humphris
,
A.
,
Miles
,
M.
, and
Hobbs
,
J.
, Jan, 2005, “
A Mechanical Microscope: High-Speed Atomic Force Microscopy
,”
Appl. Phys. Lett.
0003-6951,
86
(
3
), p.
034106
.
52.
Picco
,
L. M.
,
Bozec
,
L.
,
Ulcinas
,
A.
,
Engledew
,
D. J.
,
Antognozzi
,
M.
,
Horton
,
M. A.
, and
Miles
,
M. J.
, 2007, “
Breaking the Speed Limit With Atomic Force Microscopy
,”
Nanotechnology
0957-4484,
18
(
4
), p.
044030
.
53.
Uchihashi
,
T.
,
Ando
,
T.
, and
Yamashita
,
H.
, 2006, “
Fast Phase Imaging in Liquids Using a Rapid Scan Atomic Force Microscope
,”
Appl. Phys. Lett.
0003-6951,
89
(
21
), pp.
213112
.
54.
De Cupere
,
V. M.
,
Wetter
,
J. V.
, and
Rouxhet
,
P. G.
, 2003, “
Nanoscale Organization of Collagen and Mixed Collagen-Pluronic Adsorbed Layers
,”
Langmuir
0743-7463,
19
, pp.
6957
6967
.
55.
Jiao
,
Y.
, and
Schäffer
,
T. E.
, 2004, “
Accurate Height and Volume Measurements on Soft Samples With the Atomic Force Microscope
,”
Langmuir
0743-7463,
20
, pp.
10038
10045
.
56.
Dong
,
H.
,
Wanyun
,
M.
,
Fulong
,
L.
,
Meiling
,
Y.
,
Zhigang
,
O.
, and
Yunxu
,
S.
, 2003, “
Time-Series Observation of the Spreading Out of Microvessel Endothelial Cells With Atomic Force Microscopy
,”
Phys. Med. Biol.
0031-9155,
48
, pp.
3897
3909
.
57.
Ushiki
,
T.
,
Yamamoto
,
S.
,
Hitomi
,
J.
,
Ogura
,
S.
,
Umemoto
,
T.
, and
Shigeno
,
M.
, 2000, “
Atomic Force Microscopy of Living Cells
,”
Jpn. J. Appl. Phys., Part 1
0021-4922,
39
(
6B
), pp.
3761
3764
.
58.
Salapaka
,
S.
,
Sebastian
,
A.
,
Cleveland
,
J. P.
, and
Salapaka
,
M. V.
, 2002, “
High Bandwidth Nano-Positioner: A Robust Control Approach
,”
Rev. Sci. Instrum.
0034-6748,
73
(
9
), pp.
3232
3241
.
59.
Ando
,
Y.
,
Ikehara
,
T.
, and
Matsumoto
,
S.
, 2007, “
Development of Three-Dimensional Microstages Using Inclined Deep-Reactive Ion Etching
,”
J. Microelectromech. Syst.
1057-7157,
16
(
3
), pp.
613
621
.
60.
Leang
,
K. K.
, and
Fleming
,
A. J.
, 2008, “
High-Speed Serial-Kinematic AFM Scanner: Design and Drive Considerations
,”
Proceedings of the American Control Conference
, Seattle, WA, Jun. 11–13, pp.
3188
3193
.
61.
Li
,
Y.
, and
Bechhoefer
,
J.
, 2008, “
Feedforward Control of a Piezoelectric Flexure Stage for AFM
,”
Proceedings of the American Control Conference
, Seattle, WA, Jun. 11–13, pp.
2703
2709
.
62.
Yong
,
Y. K.
,
Aphale
,
S. S.
, and
Reza Moheimani
,
S. O.
, 2009, “
Design, Identification, and Control of a Flexure-Based xy Stage for Fast Nanoscale Positioning
,”
IEEE Trans. Nanotechnol.
1536-125X,
8
(
1
), pp.
46
54
.
63.
Schitter
,
G.
,
Thurner
,
P. J.
, and
Hansma
,
P. K.
, 2008, “
Design and Input-Shaping Control of a Novel Scanner for High-Speed Atomic Force Microscopy
,”
Mechatronics
0957-4158,
18
(
5–6
), pp.
282
288
.
64.
Perez
,
H.
,
Zou
,
Q.
, and
Devasia
,
S.
, 2004, “
Design and Control of Optimal Scan-Trajectories: Scanning Tunneling Microscope Example
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
126
(
1
), pp.
187
197
.
65.
Fleming
,
A. J.
, and
Wills
,
A.
, 2008, “
Optimal Input Signals for Bandlimited Scanning Systems
,”
Proceedings of the 17th IFAC World Congress
, Seoul, Korea, Jul. 6–11, pp.
11805
11810
.
66.
Mokaberi
,
B.
, and
Requicha
,
A. A. G.
, 2008, “
Compensation of Scanner Creep and Hysteresis for AFM Nanomanipulation
,”
IEEE Trans. Autom. Sci. Eng.
,
5
(
2
), pp.
197
206
. 1545-5955
67.
Tan
,
X.
, and
Iyer
,
R. V.
, 2009, “
Modeling and Control of Hysteresis
,”
IEEE Control Syst. Mag.
0272-1708,
29
, pp.
26
29
.
68.
Okazaki
,
Y.
, 1990, “
A Micro-Positioning Tool Post Using a Piezoelectric Actuator for Diamond Turning Machines
,”
Precis. Eng.
0141-6359,
12
, pp.
151
156
.
69.
Leang
,
K.
, and
Devasia
,
S.
, 2002, “
Hysteresis, Creep, and Vibration Compensation for Piezoactuators: Feedback and Feedforward Control
,”
Proceedings of the Second IFAC Conference on Mechatronic Systems
, Berkeley, CA, Dec. 9–11, pp.
283
289
.
70.
Comstock
,
R.
, 1981, “
Charge Control of Piezoelectric Actuators to Reduce Hysteresis Effect
,” U.S. Patent No. 4,263,527.
71.
Newcomb
,
C. V.
, and
Flinn
,
I.
, 1982, “
Improving the Linearity of Piezoelectric Ceramic Actuators
,”
Electron. Lett.
0013-5194,
18
(
11
), pp.
442
444
.
72.
Fleming
,
A. J.
, and
Moheimani
,
S. O. R.
, 2005, “
A Grounded-Load Charge Amplifier for Reducing Hysteresis in Piezoelectric Tube Scanners
,”
Rev. Sci. Instrum.
0034-6748,
76
(
7
), p.
073707
.
73.
Fleming
,
A. J.
, and
Leang
,
K. K.
, 2008, “
Charge Drives for Scanning Probe Microscope Positioning Stages
,”
Ultramicroscopy
0304-3991,
108
, pp.
1551
1557
.
74.
Sebastian
,
A.
, and
Salapaka
,
S.
, 2005, “
Design Methodologies for Robust Nano-Positioning
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
13
(
6
), pp.
868
876
.
75.
Tamer
,
N.
, and
Dahleh
,
M. A.
, 1994, “
Feedback Control of Piezoelectric Tube Scanners
,”
Proceedings of the Control and Decision Conference
, Lake Buena Vista, FL, pp.
1826
1831
.
76.
Daniele
,
A.
,
Salapaka
,
S.
,
Salapaka
,
M.
, and
Dahleh
,
M.
, 1999, “
Piezoelectric Scanners for Atomic Force Microscopes: Design of Lateral Sensors, Identification and Control
,”
Proceedings of the American Control Conference
, San Diego, CA, pp.
253
257
.
77.
Schitter
,
G.
,
Menold
,
P.
,
Knapp
,
H. F.
,
Allgower
,
F.
, and
Stemmer
,
A.
, 2001, “
High Performance Feedback for Fast Scanning Atomic Force Microscopy
,”
Rev. Sci. Instrum.
0034-6748,
72
(
8
), pp.
3320
3327
.
78.
Salapaka
,
M. V.
, 2008, “
Systems and Control Approaches to Nano-Interrogation: Unraveling New Temporal and Spatial Regimes
,” keynote paper,
Invited Session on Dynamics and Control of Micro- and Nanoscale Systems-III, IFAC World Congress
.
79.
Salapaka
,
S. M.
, and
Salapaka
,
M. V.
, 2008, “
Scanning Probe Microscopy
,”
IEEE Control Syst. Mag.
0272-1708,
28
(
2
), pp.
65
83
.
80.
Pao
,
L. Y.
,
Butterworth
,
J. A.
, and
Abramovitch
,
D. Y.
, 2007, “
Combined Feedforward/Feedback Control of Atomic Force Microscopes
,”
Proceedings of the 2007 American Control Conference
, New York, NY, Jul. 11–13, pp.
3509
3515
.
81.
Butterworth
,
J. A.
,
Pao
,
L. Y.
, and
Abramovitch
,
D. Y.
, 2008, “
A Comparison of Control Architectures for Atomic Force Microscopes
,”
Proceedings of the IFAC World Congress
, Seoul, Korea, Jul., pp.
8236
8250
.
82.
Leang
,
K. K.
, and
Devasia
,
S.
, 2007, “
Feedback-Linearized Inverse Feedforward for Creep, Hysteresis, and Vibration Compensation in AFM Piezoactuators
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
15
(
5
), pp.
927
935
.
83.
Aphale
,
S. S.
,
Devasia
,
S.
, and
Moheimani
,
S. O. R.
, 2008, “
High-Bandwidth Control of a Piezoelectric Nanopositioning Stage in the Presence of Plant Uncertainties
,”
Nanotechnology
0957-4484,
19
(
12
), p.
125503
.
84.
Zou
,
Q.
,
Leang
,
K. K.
,
Sadoun
,
E.
,
Reed
,
M. J.
, and
Devasia
,
S.
, 2004, “
Control Issues in High-Speed AFM for Biological Applications: Collagen Imaging Example
,”
Asian J. Control
,
6
(
2
), pp.
164
178
. 1561-8625
85.
Zhao
,
Y.
, and
Jayasuriya
,
S.
, 1995, “
Feedforward Controllers and Tracking Accuracy in the Presence of Plant Uncertainties
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
117
, pp.
490
495
.
86.
Schitter
,
G.
,
Stemmer
,
A.
, and
Allgower
,
F.
, 2003, “
Robust 2dof-Control of a Piezoelectric Tube Scanner for High-Speed Atomic Force Microscopy
,”
Proceedings of the American Control Conference
, Denver, CO, pp.
3720
3725
.
87.
Ying
,
W.
, and
Zou
,
Q.
, 2007, “
Robust-Inversion-Based 2DOF-Control Design for Output Tracking: Piezoelectric Actuator Example
,”
IEEE Conference on Decision and Controls
, New Orleans, LA, Dec., pp.
2451
2457
.
88.
Morgan Matroc
,
I.
, 1997,
Guide to Modern Piezoelectric Ceramics
, Rev. 7-91,
Morgan Matroc, Inc.
,
Bedford, OH
.
89.
Isidori
,
A.
, 1989,
Nonlinear Control Systems: An Introduction
,
Springer-Verlag
,
Berlin
.
90.
Clayton
,
G. M.
, and
Devasia
,
S.
, 2005, “
Image-Based Control of Dynamic Effects in Scanning Tunneling Microscopes
,”
Nanotechnology
0957-4484,
16
(
6
), pp.
809
818
.
91.
Clayton
,
G. M.
, and
Devasia
,
S.
, 2007, “
Iterative Image-Based Modeling and Control for Higher Scanning Probe Microscope Performance
,”
Rev. Sci. Instrum.
0034-6748,
78
(
8
), p.
083704
.
92.
Inoue
,
T.
,
Nakano
,
M.
, and
Lwai
,
S.
, 1981, “
High Accuracy Control of a Proton Synchrotron Magnet Power Supply
,”
Proceedings of the Eighth IFAC World Congress
, pp.
216
221
.
93.
Tomizuka
,
M.
,
Tsao
,
T. C.
, and
Chew
,
K. K.
, 1988, “
Discrete Time Domain Analysis and Synthesis of Repetitive Controllers
,”
Proceedings of the American Control Conference
, pp.
860
866
.
94.
Ghosh
,
J.
, and
Paden
,
B.
, 2000, “
Nonlinear Repetitive Control
,”
IEEE Trans. Autom. Control
0018-9286,
45
(
5
), pp.
949
954
.
95.
Francis
,
B.
, and
Wonham
,
W. M.
, 1976, “
The Internal Model Principle of Control Theory
,”
Automatica
0005-1098,
12
(
5
), pp.
457
465
.
96.
Aridogan
,
U.
,
Shan
,
Y.
, and
Leang
,
K. K.
, 2008, “
Discrete-Time Phase Compensated Repetitive Control for Piezoactuators in Scanning Probe Microscopes
,”
Dynamic Systems and Controls Conference
, Ann Harbor, MI, Paper No. DSCC2008-2283, pp.
1325
1332
.
97.
Aridogan
,
U.
,
Shan
,
Y.
, and
Leang
,
K. K.
, 2009, “
Design and Analysis of Discrete-Time Repetitive Control for Scanning Probe Microscopes
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434, in press.
98.
Silverman
,
L. M.
, 1969, “
Inversion of Multivariable Linear Systems
,”
IEEE Trans. Autom. Control
0018-9286,
14
(
3
), pp.
270
276
.
99.
Bayo
,
E.
, 1987, “
A Finite-Element Approach to Control the End-Point Motion of a Single-Link Flexible Robot
,”
J. Rob. Syst.
0741-2223,
4
(
1
), pp.
63
75
.
100.
Kwon
,
D.
, and
Book
,
W. J.
, 1994, “
A Time-Domain Inverse Dynamic Tracking Control of a Single-Link Flexible Manipulator
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
116
(
2
), pp.
193
200
.
101.
Devasia
,
S.
,
Chen
,
D.
, and
Paden
,
B.
, 1996, “
Nonlinear Inversion-Based Output Tracking
,”
IEEE Trans. Autom. Control
0018-9286,
41
(
7
), pp.
930
943
.
102.
Zou
,
Q.
, and
Devasia
,
S.
, 1999, “
Preview-Based Stable-Inversion for Output Tracking
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
121
(
4
), pp.
625
630
.
103.
Andersson
,
S. B.
, and
Park
,
J.
, 2005, “
Tip Steering for Fast Imaging in AFM
,”
Proceedings of the American Control Conference
, Portland, OR, Jun. 8–10, Vol.
4
, pp.
2469
2474
.
104.
Zou
,
Q.
, and
Devasia
,
S.
, 2004, “
Preview-Based Optimal Inversion for Output Tracking: Application to Scanning Tunneling Microscopy
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
12
(
3
), pp.
375
386
.
105.
Tomizuka
,
M.
, and
Whitney
,
D. E.
, 1975, “
Optimal Discrete Finite Preview Problems (Why and How Is Future Information Important)
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
109
, pp.
319
325
.
106.
Zou
,
Q.
, 2009, “
Optimal Preview-Based Stable-Inversion for Output Tracking of Nonminimum-Phase Linear Systems
,”
Automatica
0005-1098,
45
(
1
), pp.
230
237
.
107.
Qui
,
L.
, and
Davison
,
E. J.
, 1993, “
Performance Limitations of Non-Minimum Phase Systems in the Servomechanism Problem
,”
Automatica
0005-1098,
29
(
March
), pp.
337
349
.
108.
Francis
,
B.
, 1977, “
The Linear Multivariable Regulator Problem
,”
SIAM J. Control Optim.
0363-0129,
15
, pp.
486
505
.
109.
Tomizuka
,
M.
, 1987, “
Zero Phase Error Tracking Control for Digital Control
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
109
, pp.
65
68
.
110.
Gopalswamy
,
S.
, and
Hedrick
,
J.
, 1993, “
Tracking Nonlinear Non-Minimum Phase Systems Using Sliding Control
,”
Int. J. Control
0020-7179,
57
(
5
), pp.
1141
1158
.
111.
Devasia
,
S.
, 2002, “
Should Model-Based Inverse Inputs Be Used as Feedforward Under Plant Uncertainty?
,”
IEEE Trans. Autom. Control
0018-9286,
47
(
11
), pp.
1865
1871
.
112.
Dewey
,
J.
,
Leang
,
K.
, and
Devasia
,
S.
, 1998, “
Experimental and Theoretical Results in Output-Trajectory Redesign for Flexible Structures
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
120
(
4
), pp.
456
461
.
113.
Gupta
,
N. K.
, 1980, “
Frequency Shaped Cost Functionals: Extension of Linear-Quadratic-Gaussian Design Methods
,”
J. Guid. Control
0162-3192,
3
(
6
), pp.
529
535
.
114.
Brinkerhoff
,
R.
, and
Devasia
,
S.
, 2000, “
Output Tracking for Actuator Deficient/Redundant Systems: Multiple Piezoactuator Example
,”
J. Guid. Control Dyn.
0731-5090,
23
(
2
), pp.
370
373
.
115.
Schitter
,
G.
,
Stark
,
R. W.
, and
Stemmer
,
A.
, 2004, “
Identification and Open-Loop Tracking Control of a Piezoelectric Tube Scanner for High-Speed Scanning-Probe Microscopy
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
12
(
3
), pp.
449
454
.
116.
Doyle
,
J. C.
,
Francis
,
B. A.
, and
Tannenbaum
,
A. R.
, 1992,
Feedback Control Theory
,
Macmillan
,
London
.
117.
Arimoto
,
S.
,
Kawamura
,
S.
, and
Miyazaki
,
F.
, 1984, “
On the Optimal Stabilization of Nonlinear Systems
,”
J. Rob. Syst.
0741-2223,
1
(
2
), pp.
123
140
.
118.
Craig
,
J. J.
, 1984, “
Adaptive Control of Manipulators Through Repeated Trials
,”
Proceedings of the American Control Conference
, pp.
1566
1573
.
119.
Moore
,
K. L.
, 1993,
Iterative Learning Control for Deterministic Systems
,
Springer-Verlag
,
London
.
120.
Ghosh
,
J.
, and
Paden
,
B.
, 2001, “
Iterative Learning Control for Nonlinear Nonminimum Phase Plants
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
123
, pp.
21
30
.
121.
Mishra
,
S.
, and
Tomizuka
,
M.
, 2005, “
An Optimization-Based Approach for Design of Iterative Learning Controllers With Accelerated Rates of Convergence
,”
Proceedings of the 44th IEEE Conference on Decision and Control
, Seville, Spain, Dec. 12–15, Vol.
115
, pp.
2427
2432
.
122.
Bristow
,
D.
, and
Alleyne
,
A.
, 2008, “
Monotonic Convergence of Iterative Learning Control for Uncertain Systems Using a Time-Varying Filter
,”
IEEE Trans. Autom. Control
0018-9286,
53
(
2
), pp.
582
585
.
123.
Tsao
,
T.
, and
Tomizuka
,
M.
, 1987, “
Adaptive Zero Phase Error Tracking Algorithm for Digital Control
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
109
(
2
), pp.
349
354
.
124.
Ghosh
,
J.
, and
Paden
,
B.
, 2002, “
A Pseudo-Inverse Based Iterative Learning Control
,”
IEEE Trans. Autom. Control
0018-9286,
47
(
5
), pp.
831
837
.
125.
Schitter
,
G.
,
Stark
,
R. W.
, and
Stemmer
,
A.
, 2004, “
Fast Contact-Mode Atomic Force Microscopy on Biological Specimen by Model-Based Control
,”
Ultramicroscopy
0304-3991,
100
(
3–4
), pp.
253
257
.
126.
Kim
,
K. -S.
, and
Zou
,
Q.
, 2008, “
Model-Less Inversion-Based Iterative Control for Output Tracking: Piezo Actuator Example
,”
Proceedings of the American Control Conference
, Seattle, WA, Jun. 11–13, pp.
2170
2715
.
127.
Wu
,
Y.
, and
Zou
,
Q.
, 2007, “
Iterative Control Approach to Compensate for Both the Hysteresis and the Dynamics Effects of Piezo Actuators
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
15
(
5
), pp.
936
944
.
128.
Atkeson
,
C. G.
, and
McIntyre
,
J.
, 1986, “
Robot Trajectory Learning Through Practice
,”
IEEE International Conference on Robotics and Automation
, pp.
1737
1742
.
129.
Ghosh
,
J.
, and
Paden
,
B.
, 1999, “
A Pseudo-Inverse Based Iterative Learning Control for Nonlinear Plants With Disturbances
,”
IEEE Conference on Decision and Control
, Dec.
130.
Iyer
,
R.
,
Tan
,
X.
, and
Krishnaprasad
,
P.
, 2005, “
Approximate Inversion of the Preisach Hysteresis Operator With Application to Control of Smart Actuators
,”
IEEE Trans. Autom. Control
0018-9286,
50
(
6
), pp.
798
810
.
131.
Ashley
,
S. C.
,
Aridogan
,
U.
, and
Leang
,
K. K.
, 2008, “
Hysteresis Inverse Iterative Learning Control of Piezoactuators in AFM
,”
17th IFAC World Congress
, Seoul, Korea.
132.
Kim
,
K.
,
Lin
,
Z.
,
Shriotrya
,
P.
,
Sundararajan
,
S.
, and
Zou
,
Q.
, 2008, “
Iterative Control Approach to High-Speed Force-Distance Curve Measurement Using AFM: Time Dependent Response of PDMS
,”
Ultramicroscopy
0304-3991,
108
, pp.
911
920
.
133.
Kim
,
K.
,
Zou
,
Q.
, and
Su
,
C.
, 2008, “
A New Approach to Scan-Trajectory Design and Track: AFM Force Measurement Example
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
130
, p.
051005
.
134.
Kassel
,
D. B.
, 2001, “
Combinatorial Chemistry and Mass Spectrometry in the 21st Century Discovery Laboratory
,”
Chem. Rev. (Washington, D.C.)
0009-2665,
101
, pp.
255
267
.
135.
Szostak
,
J.
, 1997, “
Combinatorial Chemistry: Special Thematic Issue
,”
Chem. Rev. (Washington, D.C.)
0009-2665,
97
, pp.
347
509
.
136.
Cawse
,
J. N.
, 2001, “
Experimental Strategies for Combinatorial and High-Throughput Materials Development
,”
Acc. Chem. Res.
0001-4842,
34
(
3
), pp.
213
221
.
137.
Butt
,
H.
,
Cappella
,
B.
, and
Kappl
,
M.
, 2005, “
Force Measurements With the Atomic Force Microscope: Technique, Interpretation and Applications
,”
Surf. Sci. Rep.
0167-5729,
59
, pp.
1
152
.
138.
Xu
,
Z.
,
Kim
,
K.
,
Zou
,
Q.
, and
Shrotriya
,
P.
, 2008, “
Broadband Measurement of Rate-Dependent Viscoelasticity at Nanoscale Using Scanning Probe Microscope: Poly(Dimethylsiloxane) Example
,”
Appl. Phys. Lett.
0003-6951,
93
(
13
), p.
133103
.
139.
Perez
,
H.
, and
Devasia
,
S.
, 2003, “
Optimal Output Transitions for Linear Systems
,”
Automatica
0005-1098,
39
(
2
), pp.
181
192
.
140.
Iamratanakul
,
D.
, and
Devasia
,
S.
, 2009, “
Minimum-Time/Energy, Output Transitions for Dual-Stage Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
131
(
2
), p.
024503
.
141.
Lehenkari
,
P. P.
,
Charras
,
G. T.
,
Nykanen
,
A.
, and
Horton
,
M. A.
, 2000, “
Adapting Atomic Force Microscopy for Cell Biology
,”
Ultramicroscopy
0304-3991,
82
, pp.
289
295
.
142.
Abraham
,
V. C.
,
Krishnamurthi
,
V.
,
Taylor
,
D. L.
, and
Lanni
,
F.
, 1999, “
The Actin-Based Nanomachine at the Leading Edge of Migrating Cells
,”
Biophys. J.
0006-3495,
77
(
3
), pp.
1721
1732
.
143.
Small
,
J. V.
,
Stradal
,
T.
,
Vignal
,
E.
, and
Rottner
,
K.
, 2002, “
The Lamellipodium: Where Motility Begins
,”
Trends Cell Biol.
0962-8924,
12
(
3
), pp.
112
120
.
144.
Mathur
,
A. B.
,
Truskey
,
G. A.
, and
Reichert
,
W. M.
, 2000, “
Atomic Force and Total Internal Reflection Fluorescence Microscopy for the Study of Force Transmission in Endothelial Cells
,”
Biophys. J.
0006-3495,
78
, pp.
1725
1735
.
145.
Grimellec
,
C. L.
,
Lesniewska
,
E.
,
Giocondi
,
M. -C.
,
Finot
,
E.
,
Vie
,
V.
, and
Goudonnet
,
J. -P.
, 1998, “
Imaging of the Surface of Living Cells by Low-Force Contact-Mode Atomic Force Microscopy
,”
Biophys. J.
0006-3495,
75
, pp.
695
703
.
146.
Prater
,
C. B.
,
Wilson
,
M. R.
,
Garnaes
,
J.
,
Massie
,
J.
,
Elings
,
V. B.
, and
Hansma
,
P. K.
, 1991, “
Atomic Force Microscopy of Biological Samples at Low Temperature
,”
J. Vac. Sci. Technol. B
1071-1023,
9
(
2
), pp.
989
991
.
147.
Schitter
,
G.
,
Allgöwer
,
F.
, and
Stemmer
,
A.
, 2004, “
A New Control Strategy for High-Speed Atomic Force Microscopy
,”
Nanotechnology
0957-4484,
15
, pp.
108
114
.
148.
Tien
,
S.
, July 2007, “
High-Speed Nano-Precision Positioning: Theory and Application to AFM Imaging of Soft Samples
,” Ph.D. thesis, University of Washington, Seattle, WA.
149.
Tien
,
S.
, and
Devasia
,
S.
, 2009, “
Rapid AFM Imaging of Large Soft Samples in Liquid With Small Forces
,”
Asian J. Control
,
11
(
2
), pp.
154
165
. 1561-8625
150.
Fraden
,
J.
, 1993,
AIP Handbook of Modern Sensors: Physics Designs and Applications
,
American Institute of Physics
,
New York
.
151.
Lapshin
,
R. V.
, 1998, “
Automatic Lateral Calibration of Tunneling Microscope Scanners
,”
Rev. Sci. Instrum.
0034-6748,
69
(
9
), pp.
3268
3276
.
152.
Lapshin
,
R. V.
, 2004, “
Feature-Oriented Scanning Methodology for Probe Microscopy and Nanotechnology
,”
Nanotechnology
0957-4484,
15
, pp.
1135
1151
.
153.
Cunningham
,
M.
,
Jenkins
,
D.
,
Clegg
,
W.
, and
Bakush
,
M.
, 1995, “
Active Vibration Control and Actuation of a Small Cantilever for Applications in Scanning Probe Instruments
,”
Sens. Actuators, A
0924-4247,
50
(
1–2
), pp.
147
150
.
You do not currently have access to this content.