This paper considers the question of designing a fully image-based visual servo control for a class of dynamic systems. The work is motivated by the ongoing development of image-based visual servo control of small aerial robotic vehicles. The kinematics and dynamics of a rigid-body dynamical system (such as a vehicle airframe) maneuvering over a flat target plane with observable features are expressed in terms of an un-normalized spherical centroid and an optic flow measurement. The image-plane dynamics with respect to force input are dependent on the height of the camera above the target plane. This dependence is compensated by introducing virtual height dynamics and adaptive estimation in the proposed control. A fully nonlinear adaptive control design is provided that ensures asymptotic stability of the closed-loop system for all feasible initial conditions. The choice of control gains is based on an analysis of the asymptotic dynamics of the system. Results from a realistic simulation are presented that demonstrate the performance of the closed-loop system. To the author’s knowledge, this paper documents the first time that an image-based visual servo control has been proposed for a dynamic system using vision measurement for both position and velocity.

1.
Mahony
,
R.
,
Hamel
,
T.
, and
Pflimlin
,
J.-M.
, 2005, “
Complementary Filter Design on the Special Orthogonal Group SO(3)
,”
Proceedings of the IEEE Conference on Decision and Control, CDC05
, Dec.
Institue of Electrical and Electronic Engineers
,
Seville, Spain
.
2.
Roberts
,
J.
,
Corke
,
P.
, and
Buskey
,
G.
, 2002, “
Low-Cost Flight Control System for a Small Autonomous Helicopter
,”
Proceedings of the Australasian Conference on Robotics and Automation, ACRA02
,
Auckland, New Zealand
.
3.
Bryson
,
M.
, and
Sukkarieh
,
S.
, 2004, “
Vehicle Model Aided Inertial Navigation for a UAV Using Low-Cost Sensors
,”
Proceedings of the Australasian Conference on Robotics and Automation
,
Australian Robotics and Automation Association
, http://www.araa.asn.au/acra/acra2004/index.htmlhttp://www.araa.asn.au/acra/acra2004/index.html
4.
Armesto
,
L.
,
Chroust
,
S.
,
Vincze
,
M.
, and
Tornero
,
J.
, 2004, “
Multi-Rate Fusion With Vision and Inertial Sensors
,”
Proceedings of the IEEE International Conference on Robotics and Automation, ICRA’04
, Vol.
1
, pp.
193
199
.
5.
Corke
,
P.
, 2004, “
An Inertial and Visual Sensing System for a Small Autonomous Helicopter
,”
J. Rob. Syst.
0741-2223,
21
(
2
), pp.
43
51
.
6.
Corke
,
P.
,
Dias
,
J.
,
Vincze
,
M.
, and
Lobo
,
J.
, 2005, “
Integration of Vision and Inertial Sensors
,”
Proceedings of the IEEE International Conference on Robotics and Automation, ICRA ’05
, W-M04,
Barcelona, Spain
, Apr.
7.
Grimm
,
M.
, and
Grigat
,
R.-R.
, 2004, “
Real-Time Hybrid Pose Estimation From Vision and Inertial Data
,”
Proceedings of First Canadian Conference on Computer and Robot Vision
, May, pp.
480
486
.
8.
Lobo
,
J.
, and
Dias
,
J.
, 2003, “
Vision and Inertial Sensor Cooperation Using Gravity as a Vertical Reference
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
25
(
12
), pp.
1597
1608
.
9.
Rehbinder
,
H.
, and
Ghosh
,
B. K.
, 2003, “
Pose Estimation Using Line-Based Dynamic Vision and Inertial Sensors
,”
IEEE Trans. Autom. Control
0018-9286,
48
(
2
), pp.
186
199
.
10.
Amidi
,
O.
,
Kanade
,
T.
, and
Miller
,
R.
, 1999,
Vision-Based Autonomous Helicopter Research at Carnegie Mellon Robotics Institute (1991–1998)
,
M.
Vincze
and
G. D.
Hager
, eds.,
IEEE
,
New York
, Chap. 15, pp.
221
232
.
11.
Frazzoli
,
E.
,
Dahleh
,
M. A.
, and
Feron
,
E.
, 1999,
Advances in Systems Theory
,
Kluwer Academic
,
Dordrecht
.
12.
Johnson
,
E. N.
, and
Kannan
,
S. K.
, 2005, “
Adaptive Trajectory Control for Autonomous Helicopters
,”
AIAA J.
0001-1452,
28
(
3
), pp.
524
538
.
13.
Saripalli
,
S.
,
Roberts
,
J. M.
,
Corke
,
P. I.
, and
Buskey
,
G.
, 2003, “
A Tale of Two Helicopters
,”
Proceedings of the IEEE/RSJ Intertnational Conference on Intelligent Robots and Systems
,
Las Vegas
, Oct., pp.
805
810
.
14.
Shakernia
,
O.
,
Ma
,
Y.
,
Koo
,
T.
, and
Sastry
,
S.
, 1999, “
Landing an Unmanned Air Vehicle: Vision Based Motion Estimation and Nonlinear Control
,”
Asian Journal of Control
,
1
(
3
), pp.
128
145
.
15.
Chaumette
,
F.
, 1990, “
La relation vision-commande: théorie et application à des tâches robotiques
,” Ph.D. thesis, Université de Rennes, Rennes.
16.
Espiau
,
B.
,
Chaumette
,
F.
, and
Rives
,
P.
, 1992, “
A New Approach to Visual Servoing in Robotics
,”
IEEE Trans. Rob. Autom.
1042-296X,
8
(
3
), pp.
313
326
.
17.
Sanderson
,
A. C.
, and
Weiss
,
L. E.
, 1982, “
Image-Based Visual Servo Control of Robots
,”
Proc. SPIE
0277-786X,
360
, pp.
164
169
.
18.
Hutchinson
,
S.
,
Hager
,
G.
, and
Corke
,
P.
, 1996, “
A Tutorial on Visual Servo Control
,”
IEEE Trans. Rob. Autom.
1042-296X,
12
(
5
), pp.
651
670
.
19.
Chaumette
,
F.
, 2004, “
Image Moments: A General and Useful Set of Features for Visual Servoing
,”
IEEE Trans. Rob. Autom.
1042-296X,
20
(
4
), pp.
713
723
.
20.
Hosada
,
K.
, and
Asada
,
M.
, 1994, “
Versatile Visual Servoing Without Knowledge of True Jacobian
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Munich, Germany
, pp.
186
193
.
21.
Malis
,
E.
,
Chaumette
,
F.
, and
Boudet
,
S.
, 1999, “
2-1/2-d Visual Servoing
,”
IEEE Trans. Rob. Autom.
1042-296X,
15
(
2
), pp.
238
250
.
22.
Papanikolopoulos
,
N.
,
Khosla
,
P. K.
, and
Kanade
,
T.
, 1991, “
Adaptive Robot Visual Tracking
,”
Proceedings of the American Control Conference
, pp.
962
967
.
23.
Piepmeier
,
J. A.
, 1999, “
A Dynamic Quasi-Newton Method for Model Independent Visual Servoing
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta.
24.
Shen
,
Y.
,
Sun
,
D.
,
Liu
,
Y.-H.
, and
Li
,
K.
, 2003, “
Asymptotic Trajectory Tracking of Manipulators Using Uncalibrated Visual Feedback
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
8
(
1
), pp.
87
98
.
25.
Astolfi
,
A.
,
Hsu
,
L.
,
Netto
,
M.
, and
Ortega
,
R.
, 2002, “
Two Solutions to the Adaptive Visual Servoing Problem
,”
IEEE Trans. Rob. Autom.
1042-296X,
18
(
3
), pp.
387
392
.
26.
Kelly
,
R.
, 1996, “
Robust Asymptotically Stable Visual Servoing of Planar Robots
,”
IEEE Trans. Rob. Autom.
1042-296X,
12
(
5
), pp.
759
766
.
27.
Zergeroglu
,
E.
,
Dawson
,
D.
,
de Queiroz
,
M.
, and
Nagarkatti
,
S.
, 1999, “
Robust Visual-Servo Control of Robot Manipulators in the Presence of Uncertainty
,”
Proceedings of the 38th Conference on Decision and Control
,
Phoenix, AZ
.
28.
Hamel
,
T.
, and
Mahony
,
R.
, 2000, “
Robust Visual Servoing for Under-Actuated Dynamic Systems
,”
Proceedings of the Conference on Decision and Control, CDC’2000
,
Sydney
, pp.
3933
3938
.
29.
Hamel
,
T.
, and
Mahony
,
R.
, 2002, “
Visual Servoing of an Under-Actuated Dynamic Rigid-Body System: An Image Based Approach
,”
IEEE Trans. Rob. Autom.
1042-296X,
18
(
2
), pp.
187
198
.
30.
Srinivasan
,
M. V.
, and
Zhang
,
S.
, 2004, “
Visual Motor Computations in Insects
,”
Annu. Rev. Neurosci.
0147-006X,
27
, pp.
679
696
.
31.
Lee
,
D. N.
, 1976, “
A Theory of Visual Control of Braking Based on Information About Time to Collision
,”
Perception
0301-0066,
5
(
4
), pp.
437
459
.
32.
Coombs
,
D.
,
Herman
,
M.
,
Hong
,
T.
, and
Nashman
,
M.
, 1998, “
Real-Time Obstacle Avoidance Using Central Flow Divergence and Peripheral Flow
,”
IEEE Trans. Rob. Autom.
1042-296X,
14
(
1
), pp.
49
59
.
33.
Nelson
,
R. C.
, and
Aloimonos
,
J. Y.
, 1989, “
Obstacle Avoidance Using Flow Field Divergence
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
11
(
10
), pp.
1102
1106
.
34.
McCarthy
,
C.
, and
Barnes
,
N.
, 2004, “
Performance of Optical Flow Techniques for Indoor Navigation With a Mobile Robot
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
5093
5098
.
35.
Questa
,
P.
,
Grossmann
,
E.
, and
Sandini
,
G.
, 1995, “
Camera Self-Orientation and Docking Manouevre Using Normal Flow
,”
Proceedings of SPIE—the International Society for Optical Engineering
,
Orlando
, Vol.
2488
, pp.
274
283
.
36.
Santos-Victor
,
J.
, and
Sandini
,
G.
, 1997, “
Visual Behaviours for Docking
,”
Comput. Vis. Image Underst.
1077-3142,
67
(
3
), pp.
223
238
.
37.
Srinivasan
,
M.
,
Chahl
,
J.
,
Weber
,
K.
,
Venkatesh
,
S.
,
Nagle
,
M.
, and
Zhang
,
S.
, 1999, “
Robot Navigation Inspired by Principles of Insect Vision
,”
Rob. Auton. Syst.
0921-8890,
26
, pp.
203
216
.
38.
Chahl
,
J. S.
,
Srinivasan
,
M. V.
, and
Zhang
,
S. W.
, 2004, “
Landing Strategies in Honeybees and Applications to Uninhabited Airborne Vehicles
,”
Int. J. Robot. Res.
0278-3649,
23
, pp.
101
110
.
39.
Green
,
W. E.
,
Oh
,
P. Y.
, and
Barrows
,
G.
, 2004, “
Flying Insect Inspired Vision for Autonomous Aerial Robot Maneuvers in Near-Earth Environments
,”
IEEE International Conference on Robotics and Automation
, Apr. Vol.
3
, pp.
2347
2352
.
40.
Netter
,
T.
, and
Franceschini
,
N.
, 1997, “
A Robotic Aircraft That Follows Terrain Using a Neuromorphic Eye
,”
Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS ’97
, Sept., Vol.
2
, pp.
129
134
.
41.
Ruffier
,
F.
, and
Franceschini
,
N.
, 2004, “
Visually Guided Micro-Aerial Vehicle: Automatic Take Off, Terrain Following, Landing and Wind Reaction
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
New Orleans, LA
, Apr., pp.
2339
2346
.
42.
Ruffier
,
F.
, and
Franceschini
,
N.
, 2005, “
Optic Flow Regulation: the Key to Aircraft Automatic Guidance
,”
Rob. Auton. Syst.
0921-8890,
50
, pp.
177
194
.
43.
Zbikowski
,
R.
, 2005, “
Fly Like a Fly
,”
IEEE Spectrum
0018-9235,
42
(
11
), pp.
46
51
.
44.
Lambrinos
,
D.
,
Möller
,
R.
,
Labhart
,
T.
,
Pfeifer
,
R.
, and
Wehner
,
R.
, 2000, “
A Mobile Robot Employing Insect Strategies for Navigation
,”
Rob. Auton. Syst.
0921-8890,
30
(
1
), pp.
39
64
.
45.
Möller
,
R.
, 2000, “
Insect Visual Homing Strategies in a Robot With Analog Processing
,”
Biol. Cybern.
0340-1200,
83
, pp.
231
243
.
46.
Krstic
,
M.
,
Kanellakopoulos
,
I.
, and
Kokotovic
,
P. V.
, 1995,
Nonlinear and Adaptive Control Design
,
American Mathematical Society
,
Providence, RI
.
47.
Dahlen
,
M.
,
Frazzoli
,
E.
, and
Feron
,
E.
, 2000, “
Trajectory Tracking Control Design for Autonomous Helicopters Using a Backstepping Algorithm
,”
Proceedings of the American Control Conference ACC
, pp.
4102
4107
.
48.
Hamel
,
T.
,
Mahony
,
R.
,
Lozano
,
R.
, and
Ostrowski
,
J.
, 2002, “
Dynamic Modelling and Configuration Stabilization for an X4-Flyer
,”
Proceedings of the International Federation of Automatic Control Symposium, IFAC 2002
,
Barcelona, Spain
.
49.
Pounds
,
P.
,
Mahony
,
R.
,
Hynes
,
P.
, and
Roberts
,
J.
, 2002, “
Design of a Four-Rotor Aerial Robot
,”
Australasian Conference on Robotics and Automation Conference, ACRA-2002
,
Auckland, New Zealand
.
50.
Goldstein
,
H.
, 1980,
Classical Mechanics
,
Addison-Wesley Series in Physics
,
Addison-Wesley
,
Reading, MA
, 2nd ed.
51.
Bradley
,
R.
, 1996, “
The Flying Brick Exposed: Nonlinear Control of a Basic Helicopter Model
,” Department of Mathematics, Glasgow Caledonian University, Technical Report TR/MAT/RB/6.
53.
Hamel
,
T.
, and
Mahony
,
R.
, 2006, “
Attitude Estimation on SO(3) Based on Direct Inertial Measurements
,”
Robotics and Automation, ICRA 2006
,
Institue of Electrical and Electronic Engineers
,
Orlando FL.
, pp.
2170
2175
.
54.
Ghanadan
,
R.
, 1994, “
Nonlinear Control System Design via Dynamic Order Reduction
,”
Proceedings of the Conference on Decision and Control
, pp.
3752
3757
.
55.
Sepulchre
,
R.
,
Janković
,
M.
, and
Kokotović
,
P.
, 1997,
Constructive Nonlinear Control
,
Springer-Verlag
,
London
.
56.
Mahony
,
R.
, and
Hamel
,
T.
, 2005, “
Image Based Visual Servo Control of Aerial Robotic Systems Using Linear Image Features
,”
IEEE Trans. Rob. Autom.
1042-296X,
21
(
2
), pp.
227
239
.
57.
Usher
,
K.
,
Corke
,
P.
, and
Ridley
,
P.
, 2002, “
Home Alone: Mobile Robot Visual Servoing
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems—Visual Servoing Workshop
,
Lausanne, Switzerland
, Oct.
58.
Khalil
,
H. K.
, 1996,
Nonlinear Systems
, 2nd ed.,
Prentice-Hall
,
Englewood cliffs, NJ
.
59.
Mahony
,
R.
, and
Hamel
,
T.
, 2000, “
Stable Tracking Control for Unmanned Aerial Vehicles Using Non-Inertial Measurements
,”
Proceedings of the Conference on Decision and Control, CDC’2000
,
Sydney
, pp.
2971
2976
.
60.
Corke
,
P. I.
, and
Hutchinson
,
S. A.
, 2000, “
A New Partitioned Approach to Image-Based Visual Servo Control
,”
Proceedings of the International Symposium on Robotics
,
Montreal, Canada
, May.
61.
Ichikawa
,
M.
,
Yamada
,
H.
, and
Takeuchi
,
J.
, 2001, “
Flying Robot With Biologically Inspired Vision
,”
Journal of Robotics and Mechatronics
,
13
(
6
), pp.
621
624
.
62.
Srinivasan
,
M. V.
,
Zhang
,
S. W.
,
Chahl
,
J. S.
,
Barth
,
E.
, and
Venkatesh
,
S.
, 2000, “
How Honeybees Make Grazing Landings on Flat Surfaces
,”
Biol. Cybern.
0340-1200,
83
(
3
), pp.
171
183
.
You do not currently have access to this content.