Due to the compact layout, manufacturing tolerance, modeling errors, and environmental changes, microelectromechanical systems (MEMSs) are subjected to parasitics and parameter variations. In order to better guarantee their stability and a certain level of performance, one must take into account these factors in the design of MEMS control systems. This work presents two robust control laws for a parallel-plate electrostatic microactuator in the presence of uncertainties. The dynamical model of the system, including parallel and serial parasitics, is firstly established and two control schemes, both based on input-to-state stabilization and robust backstepping, are proposed. The stability and the performance of the system using these control schemes are demonstrated through both stability analysis and numerical simulation.

1.
Senturia
,
S. D.
, 2002,
Microsystem Design
,
Kluwer Academic
,
Norwell, MA
.
2.
Maithripala
,
D. H. S.
,
Berg
,
J. M.
, and
Dayawansa
,
W. P.
, 2003, “
Capacitive Stabilization of An Electrostatic Actuator: An Output Feedback Viewpoint
,”
Proceedings of the 2003 American Control Conference
,
Denver, CO
, pp.
4053
4058
.
3.
Maithripala
,
D. H. S.
,
Berg
,
J. M.
, and
Dayawansa
,
W. P.
, 2003, “
Nonlinear Dynamic Output Feedback Stabilization of Electostatically Actuated MEMS
,”
Proceedings, of the 42nd IEEE Conference on Decision and Control
,
Maui, HI
, pp.
61
66
.
4.
Ortega
,
R.
, and
Garcia-Canseco
,
E.
, 2004, “
Interconnection and Damping Assignment Passivity-Based Control: A Survey
,”
Eur. J. Control
0947-3580,
10
(
5
), pp.
432
450
.
5.
Maithripala
,
D. H. S.
,
Kawade
,
B. D.
,
Berg
,
J. M.
, and
Dayawansa
,
W. P.
, 2005, “
A General Modelling and Control Framework for Electrostatically Actuated Mechanical Systems
,”
Int. J. Robust Nonlinear Control
1049-8923,
15
, pp.
839
857
.
6.
Maithripala
,
D. H. S.
,
Berg
,
J. M.
, and
Dayawansa
,
W. P.
, 2005, “
Control of an Electrostatic MEMS Using Static and Dynamic Output Feedback
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
127
, pp.
443
450
.
7.
Zhu
,
G.
,
Lévine
,
J.
, and
Praly
,
L.
, 2005, “
On the Differential Flatness and Control of Electrostatically Actuated MEMS
,”
Proceedings, of the 2005 American Control Conference
,
Portland, OR
, pp.
2493
2498
.
8.
Zhu
,
G.
,
Lévine
,
J.
,
Praly
,
L.
, and
Peter
,
Y.-A.
, 2006, “
Flatness-Based Control of Electrostatically Actuated MEMS With Application to Adaptive Optics: A Simulation Study
,”
J. Microelectromech. Syst.
1057-7157,
15
(
5
), pp.
1165
1174
.
9.
Zhu
,
G.
,
Lévine
,
J.
, and
Praly
,
L.
, 2005, “
Improving the Performance of an Electrostatically Actuated MEMS by Nonlinear Control: Some Advances and Comparisons
,”
Proceedings, of the 44th IEEE CDC and ECC 2005
,
Seville
,
Spain
, pp.
7534
7539
.
10.
Chan
,
E.
, and
Dutton
,
R. W.
, 2000, “
Electrostatic Micromechanical Actuator with Extended Range of Travel
,”
J. Microelectromech. Syst.
1057-7157,
9
(
3
), pp.
321
328
.
11.
Seeger
,
J. I.
, and
Boser
,
B. E.
, 2003, “
Charge Control of Parallel-Plate, Electrostatic Actuators and the Tip-in Instability
,”
J. Microelectromech. Syst.
1057-7157,
12
(
5
), pp.
656
671
.
12.
Zhu
,
G.
,
Penet
,
J.
, and
Saydy
,
L.
, 2006, “
Robust Control of an Electrostatic Actuated MEMS in the Presence of Parasitics and Parameter Uncertainties
,”
Proceedings of the 2006 American Control Conference
,
Minneapolis, MN
, pp.
1233
1238
.
13.
Sontag
,
E. D.
, 2000. “
The ISS Philosophy as a Unifying Framework for Stability-Like Behavior
,”
Nonlinear Control in the Year 2000
,
Lecture Notes in Control and Information Sciences
,
A.
Isidori
,
F.
Lamnabhi-Lagarrigue
, and
W.
Respondek
, eds.,
Springer-Verlag
,
Berlin
, pp.
443
468
.
14.
Krstić
,
M.
,
Kanellakopoulos
,
I.
, and
Kokotović
,
P.
, 1995,
Nonlinear and Adaptative Control Design
,
Wiley
,
New York
.
15.
Yang
,
Z.-J.
, and
Minashima
,
M.
, 2001, “
Robust Nonlinear Control of a Feedback Linearizable Voltage-Controlled Magnetic Levitation System
,”
Trans. Inst. Electr. Eng. Jpn., Part C
0385-4221,
121-C
(
7
), pp.
1203
1211
.
16.
Maithripala
,
D. H. S.
,
Kawade
,
B. D.
,
Berg
,
J. M.
, and
Dayawansa
,
W. P.
, 2006, “
Passivity-Based Control of Electrostatic MEMS in the Presence of Parasitics
,”
Proceedings, of the 45th IEEE Conference on Decision and Control
,
San Diego, CA
, pp.
615
620
.
17.
Sloggett
,
G. J.
,
Barton
,
N. G.
, and
Spencer
,
S. J.
, 1986, “
Fringing Fields in Disc Capacitors
,”
J. Phys. A
0305-4470,
19
, pp.
2725
2736
.
18.
Cheng
,
J.
,
Zhe
,
J.
, and
Wu
,
X.
, 2004, “
Analytical and Finite Element Model Pull-in Study of Rigid and Deformable Electrostatic Microactuators
,”
J. Micromech. Microeng.
0960-1317,
14
(
1
), pp.
57
68
.
19.
Hosseini
,
M.
,
Zhu
,
G.
, and
Peter
,
Y.-A.
, 2006, “
A New Formulation of Fringing Capacitance and Its Application to the Control of Parallel-Plate Electrostatic Micro Actuators
,”
Proceedings of the DTIP of MEMS & MOEMS
,
Stresa
,
Italy
, pp.
211
216
.
20.
Pont-Nin
,
J.
,
Rodríguez
,
A.
, and
Castañer
,
L. M.
, 2002, “
Voltage and Pull-in Time in Current Drive of Electrostatic Actuators
,”
J. Microelectromech. Syst.
1057-7157,
11
(
3
), pp.
196
205
.
22.
Zhu
,
G.
,
Penet
,
J.
, and
Saydy
,
L.
, 2007, “
Robust Output Feedback Control of an Electrostatic Micro-Actuator
,”
Proceedings of the 2007 American Control Conference
,
New York
.
23.
Krstić
,
M.
,
Sun
,
J.
, and
Kokotović
,
P.
, 1996, “
Robust Control of Nonlinear Systems With Input Unmodeled Dynamics
,”
IEEE Trans. Autom. Control
0018-9286,
41
(
6
), pp.
913
920
.
You do not currently have access to this content.