A multiestimation-based robust adaptive controller is designed for robotic manipulators. The control scheme is composed of a set of estimation algorithms running in parallel along with a supervisory index proposed with the aim of evaluating the identification performance of each one. Then, a higher-order level supervision algorithm decides in real time the estimator that will parametrize the adaptive controller at each time instant according to the values of the above supervisory indexes. There exists a minimum residence time between switches in such a way that the closed-loop system stability is guaranteed. It is verified through simulations that multiestimation-based schemes can improve the transient response of adaptive systems as well as the closed-loop behavior when a sudden change in the parameters or in the reference input occurs by appropriate switching between the various estimation schemes running in parallel. The closed-loop system is proved to be robustly stable under the influence of uncertainties due to a poor modeling of the robotic manipulator. Finally, the usefulness of the proposed scheme is highlighted by some simulation examples.
Skip Nav Destination
e-mail: iebibhea@ehu.es
Article navigation
June 2006
Technical Briefs
A Robustly Stable Multiestimation-Based Adaptive Control Scheme for Robotic Manipulators
A. Ibeas,
A. Ibeas
Instituto de Investigación y Desarrollo de Procesos, Dpto. de Ingeniería de Sistemas y Automática, Facultad de Ciencia y Tecnología,
e-mail: iebibhea@ehu.es
Universidad del País Vasco
, Campus de Leioa, Apdo. 644, 48080 Bilbao, Spain
Search for other works by this author on:
M. de la Sen
M. de la Sen
Instituto de Investigación y Desarrollo de Procesos, Dpto. de Ingeniería de Sistemas y Automática, Facultad de Ciencia y Tecnología,
Universidad del País Vasco
, Campus de Leioa, Apdo. 644, 48080 Bilbao, Spain
Search for other works by this author on:
A. Ibeas
Instituto de Investigación y Desarrollo de Procesos, Dpto. de Ingeniería de Sistemas y Automática, Facultad de Ciencia y Tecnología,
Universidad del País Vasco
, Campus de Leioa, Apdo. 644, 48080 Bilbao, Spaine-mail: iebibhea@ehu.es
M. de la Sen
Instituto de Investigación y Desarrollo de Procesos, Dpto. de Ingeniería de Sistemas y Automática, Facultad de Ciencia y Tecnología,
Universidad del País Vasco
, Campus de Leioa, Apdo. 644, 48080 Bilbao, SpainJ. Dyn. Sys., Meas., Control. Jun 2006, 128(2): 414-421 (8 pages)
Published Online: March 29, 2005
Article history
Received:
March 25, 2004
Revised:
March 29, 2005
Citation
Ibeas, A., and de la Sen, M. (March 29, 2005). "A Robustly Stable Multiestimation-Based Adaptive Control Scheme for Robotic Manipulators." ASME. J. Dyn. Sys., Meas., Control. June 2006; 128(2): 414–421. https://doi.org/10.1115/1.2196418
Download citation file:
Get Email Alerts
Offline and online exergy-based strategies for hybrid electric vehicles
J. Dyn. Sys., Meas., Control
Optimal Control of a Roll-to-Roll Dry Transfer Process With Bounded Dynamics Convexification
J. Dyn. Sys., Meas., Control (May 2025)
In-Situ Calibration of Six-Axis Force/Torque Transducers on a Six-Legged Robot
J. Dyn. Sys., Meas., Control (May 2025)
Active Data-enabled Robot Learning of Elastic Workpiece Interactions
J. Dyn. Sys., Meas., Control
Related Articles
Adaptive Control of Mechanical Systems With Time-Varying Parameters and Disturbances
J. Dyn. Sys., Meas., Control (September,2004)
Decentralized Control of Rigid Robots Driven by Current-Fed Induction Motors
J. Dyn. Sys., Meas., Control (December,2002)
Design and Simulation of Robust and Adaptive Controls for a Nonlinear String System
J. Vib. Acoust (January,2004)
Dynamic Image-Based Visual Servo Control Using Centroid and Optic Flow Features
J. Dyn. Sys., Meas., Control (January,2008)
Related Proceedings Papers
Related Chapters
QP Based Encoder Feedback Control
Robot Manipulator Redundancy Resolution
Static Deformations Budget
Mechanics of Accuracy in Engineering Design of Machines and Robots Volume II: Stiffness and Metrology
Adaptive Control and Stability Analysis of Genetic Networks with SUM Regulation
Intelligent Engineering Systems through Artificial Neural Networks, Volume 16