Abstract

This article reports on feedback control algorithms for thermal systems modeled via the network approach. These networks belong to the class of descriptor systems. They are subject to nondecaying disturbances and, therefore, integral action is required for zero offset. The article includes the derivation of optimal integral controllers for general linear descriptor systems and a detailed study on decentralized control for thermal networks. Feasibility of decentralized control is established via two theorems regarding stability and decentralized integral controllability of thermal networks. Additionally, a particular strategy for the synthesis of decentralized controllers is proposed. This article concludes with a sample of the numerical tests that we performed to demonstrate the efficiency of the proposed algorithms.

1.
Welty, J. R., 1974, Engineering Heat Transfer, John Wiley, New York.
2.
Brenan, K. E., Campbell, S. L., and Petzold, L. R., 1996, Numerical Solution of Initial-Value Problems in Differential Algebraic Equations, SIAM, Philadelphia PA.
3.
Campbell, S. L., 1980, Singular Systems of Differential Equations, Research Notes in Mathematics, Vol. 40, Pitman, San Francisco, CA.
4.
Campbell, S. L., 1982, Singular Systems of Differential Equations, II, Research Notes in Mathematics, Vol. 60, Pitman, San Francisco, CA.
5.
Dai, L., 1989, Singular Control Systems, Springer, Berlin.
6.
Lewis
,
F. L.
,
1986
, “
A Survey of Linear Singular Systems
,”
Circuits Syst. Signal Process.
,
5
, pp.
3
36
.
7.
Verghese
,
G. C.
,
Levy
,
B. C.
, and
Kailath
,
T.
,
1981
, “
A Generalized State-Space for Singular Systems
,”
IEEE Trans. Autom. Control
,
AC-26, pp.
811
831
.
8.
Papalexandris
,
M. V.
, and
Milman
,
M. H.
,
2001
, “
Active Control and Parameter Updating Techniques for Nonlinear Thermal Network Models
,”
Comput. Mech.
,
27
, pp.
11
22
.
9.
Papalexandris
,
M. V.
,
Milman
,
M. H.
, and
Levine
,
M.
,
2002
, “
Nodal Temperature Estimation Algorithms for Nonlinear Thermal Network Models
,”
AIAA J.
,
40
, pp.
1451
1461
.
10.
Bender
,
D. L.
, and
Laub
,
A. J.
,
1987
, “
The Linear-Quadratic Optimal Regulator for Descriptor Systems
,”
IEEE Trans. Autom. Control
,
AC-32
, pp.
672
688
.
11.
Varga, R. S., 1961, Matrix Iterative Analysis, Prentice Hall, Englewood Cliffs, NJ.
12.
Milman
,
M. H.
, and
Petrick
,
W.
,
2002
, “
A Note on the Solution to a Common Thermal Network Problem Encountered in Heat Transfer Analysis of Spacecraft
,”
Appl. Math. Modeling
,
24
, pp.
861
879
.
13.
Cobb
,
D. J.
,
1984
, “
Controllability, Observability, and Duality in Singular Systems
,”
IEEE Trans. Autom. Control
,
AC-29
, pp.
1076
1082
.
14.
Kwakernaak, H., and Sivan, R., 1972, Linear Optimal Control Systems, Wiley Interscience, New York.
15.
Anderson, B. D. O., and Moore, J. B., 1971, Linear Optimal Control, Prentice-Hall, Englewood Cliffs, NJ.
16.
Jonckheere
,
E. A.
,
1988
, “
Variational Calculus for Descriptor Problems
,”
IEEE Trans. Autom. Control
,
AC-33
, pp.
491
495
.
17.
Morari, M., and Zafiriou, E., 1989, Robust Process Control Systems, Prentice-Hall, Englewood Cliffs, NJ.
18.
Bryant, G. F., and Yeung, L., 1996, Multivariable Control System Design Techniques: Dominance and Direct Methods, John Wiley, England.
19.
Skogestad
,
S.
, and
Morari
,
M.
,
1992
, “
Variable Selection for Decentralized Control
,”
Modeling, Identification Control
,
13
, pp.
113
125
.
20.
Campo
,
P. G.
, and
Morari
,
M.
,
1994
, “
Achievable closed-loop properties of systems under decentralized control: conditions involving the steady-state gain
,”
IEEE Trans. Autom. Control
,
AC-39
, pp.
932
943
.
21.
Bao
,
J.
,
McLellan
,
B. J.
, and
Fraser Forbes
,
J.
,
2002
, “
A Passivity-Based Analysis for Decentralized Integral Controllability
,”
Automatica
,
38
, pp.
243
247
.
22.
Lee
,
J.
, and
Edgar
,
T. F.
,
2002
, “
Conditions for Decentralized Integral Controllability
,”
J. Process Control
,
12
, pp.
797
805
.
23.
Samyudia
,
Y.
,
Lee
,
P. L.
, and
Cameron
,
I. T.
,
1995
, “
A New Approach to Decentralized Control Design
,”
Chem. Eng. Sci.
,
50
, pp.
1695
1706
.
24.
Petzold, L. R., 1983, “A Description of DASSL: A Differential/Algebraic System Solver,” Scientific Computing (Stepleman, R. S., et al., ed.), North-Holland, Amsterdam, pp. 65–68.
25.
Berman, A., and Plemmons, R. J., 1977, Non-Negative Matrices in the Mathematical Sciences, Academic, San Diego, CA.
You do not currently have access to this content.