We present a mathematical model for the dynamics of an electrostatically actuated micro-cantilever. For the common case of cantilevers excited by a periodic voltage, we show that the underlying linearized dynamics are those of a periodic system described by a Mathieu equation. We present experimental results that confirm the validity of the model, and in particular, illustrate that parametric resonance phenomena occur in capacitively actuated micro-cantilevers. We propose a system where the current measured is used as the sensing signal of the cantilever state and position through a dynamical observer. By investigating how the best achievable performance of an optimal observer depends on the excitation frequency, we show that the best such frequency is not necessarily the resonant frequency of the cantilever.

1.
Indermhule
,
P.
et al.
,
1997
, “
Fabrication and Characterization of Cantilevers With Integrated Sharp Tips and Piezoelectric Elements for Actuation and Detection for Parallel AFM Applications
,”
Sens. Actuators, A
,
A60
(
1–3
), pp.
186
190
.
2.
Despont
,
M.
et al.
,
2000
, “
VLSI-NEMS Chip for Parallel AFM Data Storage
,”
Sens. Actuators, A
,
A80
(
2
), pp.
100
107
.
3.
Britton
,
C.
et al.
,
2000
, “
Multiple-Input Microcantilever Sensors
,”
Ultramicroscopy
,
82
(
1–4
), pp.
17
21
.
4.
Moulin
,
A.
et al.
,
2000
, “
Microcantilever-Based Biosensors
,”
Ultramicroscopy
,
82
, pp.
23
31
.
5.
Sarid, D., Scanning Force Microscopy, Oxford University Press, New York, 1994.
6.
Binning
,
G.
et al.
,
1986
, “
Atomic Force Microscope
,”
Phys. Rev. Lett.
,
56
(
9
), pp.
930
933
.
7.
Fritz
,
J.
et al.
,
2000
, “
Translating Biomolecular Recognition Into Nanomechanics
,”
Science
,
288
, pp.
316
318
.
8.
Raiteri
,
R.
et al.
,
1999
, “
Sensing of Biological Substances Based on the Bending of Microfabricated Cantilevers
,”
Sens. Actuators B
,
61
, pp.
213
217
.
9.
Chui
,
B.
et al.
,
1998
, “
Independent Detection of Vertical and Lateral Forces With a Sidewall-Implanted Dual-Axis Piezoresistive Cantilever
,”
Appl. Phys. Lett.
,
72
(
11
), pp.
1388
1390
.
10.
Tortonese
,
M.
,
Barrett
,
R.
, and
Quate
,
C.
,
1993
, “
Atomic Resolution With an Atomic Force Microscope Using Piezoresistive Detection
,”
Appl. Phys. Lett.
,
62
(
8
), pp.
834
836
.
11.
Gaucher
,
P.
et al.
,
1998
, “
Piezoelectric Bimorph Cantilever for Actuation and Sensing Applications
,”
J. Phys. IV
,
8
, pp.
235
238
.
12.
Itoh, T., Ohashi, T., and Suga, T., “Piezoelectric Cantilever Array for Multiprobe Scanning Force Microscopy,” in Proc. of the IX Int. Workshop on MEMS, San Diego, CA, pp. 451–455, 1996.
13.
Minne
,
S.
,
Manalis
,
S.
, and
Quate
,
C.
,
1995
, “
Parallel Atomic Force Microscopy Using Cantilevers With Integrated Piezoresistive Sensors and Integrated Piezoelectric Actuators
,”
Appl. Phys. Lett.
,
67
(
26
), pp.
3918
3920
.
14.
Huang
,
Q.
, and
Lee
,
N.
,
2000
, “
A Simple Approach to Characterizing the Driving Force of Polysilicon Laterally Driven Thermal Microactuators
,”
Sens. Actuators, A
,
A80
(
3
), pp.
267
272
.
15.
Attia
,
P.
et al.
,
1998
, “
Fabrication and Characterization of Electrostatically Driven Silicon Microbeams
,”
Microelectron. J.
,
29
, pp.
641
44
.
16.
Blanc
,
N.
et al.
,
1996
, “
Scanning Force Microscopy in the Dynamic Mode Using Microfabricated Capacitive Sensors
,”
J. Vac. Sci. Technol. B
,
14
(
2
), pp.
901
905
.
17.
Shiba
,
Y.
et al.
,
1998
, “
Capacitive Afm Probe for High Speed Imaging
,”
Trans. of the IEE of Japan
,
118E
(
12
), pp.
647
50
.
18.
Napoli, M., and Bamieh, B., “Modeling and Observer Design for an Array of Electrostatically Actuated Microcantilevers,” in Proc. 40th IEEE Conf. on Dec. and Cont., Orlando FL, December 2001.
19.
Salapaka
,
S.
et al.
,
2002
, “
High Bandwidth Nano-Positioner: A Robust Control Approach
,”
Rev. Sci. Instrum.
,
73
(
9
), pp.
3232
41
.
20.
Daniele, A. et al., “Piezoelectric Scanners for Atomic Force Microscopes: Design of Lateral Sensors, Identification and Control,” in Proc. of the 1999 American Control Conference, San Diego, CA, June 1999.
21.
Turner, K., “Multi-Dimensional MEMS Motion Characterization Using Laser Vibrometry,” in Digest of Technical Papers Transducers’99, Sendai, Japan, 1999.
22.
Arnold, V., Mathematical Methods of Classical Mechanics, Springer, 1988.
23.
McLachlan, N., Theory and Applications of the Mathieu Functions, Oxford University Press, London, 1951.
24.
Rand, R., Lecture Notes on Nonlinear Vibrations, available online http://www.tam.cornell.edu/randdocs/, 2001.
25.
Vidyasagar, M., Nonlinear Systems Analysis, SIAM, 1993.
26.
Zhang
,
W.
et al.
,
2002
, “
Effect of Cubic Nonlinearity on Auto-Parametrically Amplified Resonant MEMS Mass Sensor
,”
Sens. Actuators, A
,
A102
(
1–2
), pp.
139
150
.
27.
Nagpal
,
K.
, and
Khargonekar
,
P.
,
1991
, “
Filtering and Smoothing in an H∞ Setting
,”
IEEE Trans. Autom. Control
,
36
(
2
), pp.
152
66
.
28.
Chen, T., and Francis, B., Optimal Sampled-Data Control Systems, Springer, 1995.
29.
Bamieh
,
B.
et al.
,
1993
, “
Minimization of the l∞-Induced Norm for Sampled-Data Systems
,”
IEEE Trans. on AC
,
38
(
5
), pp.
717
32
.
You do not currently have access to this content.