One of the main problems in high-speed train transportation systems is to counteract the fast variations of the contact force between the catenary and the pantograph collector end. The variation of the catenary equivalent stiffness, due to the suspending system, originates mechanical oscillations whose frequency and magnitude are larger and larger as the train speed increases. Such oscillations cause electric arcs that damage the mechanical structure and compromise the collection of the current from the supply wire, degradating the overall performance. Active pantographs offer the possibility of affecting the contact force evolution by suitably modifying a control torque applied at the lower arm of the pantograph. We consider the equivalent stiffness of the catenary as an uncertainty to compensate for by suitable robust control techniques, and, under the assumption that a noisy measure of the actual contact force is available, we propose an output-feedback control scheme based on higher-order sliding modes and high-gain observers. That combination allows for an almost-complete rejection of the undesired oscillations of the contact force, as confirmed by simulations, and is very attractive for real-time implementation purposes, due to its simplicity and robustness.

1.
R. J. Gostling, A. E. W. Hobbs, “The Interaction of Pantograph and Overhead Equipment: Practical applications af a New Theoretical Method,” Proc Instn Mech Engrs, vol. 197C, pp. 61–69, 1983.
2.
Makino
,
T.
,
Yoshida
,
K.
,
Seto
,
S.
,
Makino
,
K.
,
1997
, “
Running Test on Current Collector with Contact Force Controller for High-Speed Railways
,”
JSME Int. J.
,
40
(
4
), pp.
671
680
.
3.
Eppinger
,
S. D.
,
O’Connor
,
N. D.
,
Seering
,
W. P.
,
Wormley
,
D. N.
,
1988
, “
Modeling and Experimental Evaluation of Asymmetric Pantograph Dynamics
,”
ASME J. Dyn. Syst., Meas., Control
,
110
, pp.
168
174
.
4.
Manabe
,
K.
,
1992
, “
Catenary-Pantograph System for Speedup of Shinkansen Train
,”
Japanese Railway Engineering
,
117
, pp.
10
13
.
5.
Poetsch
,
G.
,
Evans
,
J.
,
Meisinger
,
R.
,
Kortum
,
W.
,
Baldauf
,
W.
,
Veitl
,
A.
,
Wallaschek
,
J.
,
1997
, “
Pantograph/Catenary Dynamics and Control
,”
Veh. Syst. Dyn.
,
28
, pp.
159
195
.
6.
G. Corriga, A. Giua, W. Matta, G. Usai, “Frequency-Shaping Design of a Gain-Scheduling Controller for Pantographs,” Proc. of the 33th Conf. on Decision and Control (CDC’94), pp. 393–398, Lake Buena Vista, Florida, December 1994.
7.
O’Connor
,
N. D.
,
Eppinger
,
S. D.
,
Seering
,
W. P.
,
Wormley
,
D. N.
,
1997
, “
Active Control of High-Speed Pantograph
,”
ASME J. Dyn. Syst., Meas., Control
,
119
, pp.
1
4
.
8.
T. X. Wu, M. J. Brennan, “Active Vibration Control of a Railway Pantograph,” Proc. Instn Mech Engrs, Vol. 211 Part F, pp. 117–130, 1997.
9.
Diana
,
G.
,
Fossati
,
F.
,
Resta
,
F.
,
1998
, “
High Speed Railway: Collecting Pantographs Active Control and Overhead Lines Diagnostic Solutions
,”
Veh. Syst. Dyn.
,
30
, pp.
69
84
.
10.
J. J. E. Slotine, W. Li Applied Nonlinear Control, Prentice-Hall International, Englewood Cliffs, New Jersey, 1991.
11.
V. I. Utkin Sliding Modes in Control and Optimization, Springer Verlag, Berlin, 1992.
12.
Sira-Ramirez
,
H.
,
1993
, “
A Dynamical Variable Structure Control Strategy in Asymptotic Output Tracking Problem
,”
IEEE Trans. Autom. Control
,
38
, pp.
615
620
.
13.
Levant
,
A.
,
1993
, “
Sliding Order and Sliding Accuracy in Sliding Mode Control
,”
Int. J. Control
,
58
, pp.
1247
1263
.
14.
G. Bartolini, A. Ferrara, A. Levant, E. Usai, “On Second Order Sliding Mode Controllers,” in “Variable Structure Systems, Sliding Mode and Nonlinear Control,” K. D. Young and U. Ozguner eds., Lecture Notes in Control and Information Sciences, vol. 247, pp. 329–350, Springer-Verlag, 1999.
15.
A. Levant, L. Fridman “Higher Order Sliding Modes as a Natural Phenomenon in Control Theory” in Robust control via variable structure and Lyapunov techniques, F. Garofalo and L. Glielmo Eds., Lecture Notes in Control and Information Sciences, vol. 217, pp. 107–133, Springer-Verlag, London, 1996.
16.
Fridman
,
L.
,
2003
, “
Chattering Analysis in Sliding Mode Systems with Inertial Sensors
,”
Int. J. Control
,
76
(
9/10
), pp.
906
912
.
17.
Atassi
,
N.
,
Khalil
,
H.
,
1999
, “
A Separation Principle for the Stabilization of a Class of Nonlinear Sistems
,”
IEEE Trans. Autom. Control
,
44
(
9
), pp.
1672
1687
.
18.
Ho
,
S.
,
Khalil
,
H. K.
,
1997
, “
Nonlinear Output-Feedback Tracking Using High-gain Observer and Variable Structure Control
,”
Automatica
,
33
, pp.
1845
1856
.
19.
A. Dabroom, H. K. Khalil, “Numerical Differentiation Using High-Gain Observers,” Proc. of the 37th Conf. on Decision and Control (CDC’97), San Diego, California, December ’97, pp. 4790–4795.
20.
Bartolini
,
G.
,
Pisano
,
A.
,
Usai
,
E.
,
2001
, “
Global Stabilization for Nonlinear Uncertain Systems with Unmodelled Actuactor Dynamics
,”
IEEE Trans. Autom. Control
,
46
(
11
), pp.
1826
1832
.
21.
A. Isidori Non Linear Control Systems, Springer Verlag, London, 1995.
22.
Bartolini
,
G.
,
Levant
,
A.
,
Pisano
,
A.
,
Usai
,
E.
, December
2000
, “
On the Robust Stabilization of Nonlinear Uncertain Systems with Incomplete State Availability
,”
ASME J. Dyn. Syst., Meas., Control
,
122
, pp.
738
745
.
23.
Levant
,
A.
,
2001
, “
Universal SISO Sliding-mode Controllers with Finite-time Convergence
,”
IEEE Trans. Autom. Control
,
46
(
9
), pp.
1447
1451
.
24.
Levant
,
A.
,
1998
, “
Robust Exact Differentiation via Sliding Mode Technique
,”
Automatica
,
34
, pp.
379
384
.
25.
Levant
,
A.
,
2003
, “
Higher-order Sliding Modes, Differentiation and Output-feedback Control
,”
Int. J. Control
,
76
(
9/10
), pp.
924
941
.
You do not currently have access to this content.