This paper presents a technique for longitudinal control of road vehicles. The technique is based on the calculation of safety distances between two vehicles and uses an optimal control strategy to regulate the speed and position of the controlled vehicle. The technique we propose can be used either for platooning strategies or for autonomous control, i.e., without cooperation or communication between vehicles or with the infrastructure required. We mainly focus on the latter aspect, in which case only measurements of the distance from the preceding vehicle are required, and can be obtained by means of a LiDAR or any equivalent system. First, we study the vehicle model and the control law, then we present simulations, stability results and evaluations.

1.
Huang
,
S.
, and
Ren
,
W.
,
1999
,
Vehicle longitudinal control using throttles and brakes
.
Robotics and Autonomous Systems
,
26
(
4
),
241
253
.
2.
Zhang
,
Y.
,
Kosmatopoulos
,
E. B.
,
Ioannou
,
P. A.
, and
Chien
,
C. C.
,
1999
,
Autonomous intelligent cruise control using front and back information for tight vehicle following maneuvers
.
IEEE Trans. Veh. Technol.
,
48
(
1
),
319
328
.
3.
Special issue on intelligent vehicle highway systems.
1999
, IEEE Trans. Veh. Technol., 40(1).
4.
Shladover
,
S. E.
,
1995
,
Review of the state of development of advanced vehicle control systems (AVCS
).
Veh. Syst. Dyn.
,
24
(
6–7
),
551
595
.
5.
Lee
,
H.
, and
Tomizuka
,
M.
,
2001
,
Coordinated longitudinal and lateral motion control of vehicles for IVHS
,
J. Dyn. Syst., Meas., Control
,
123
(
3
),
535
543
.
6.
Rajamani
,
R.
,
Tan
,
H. S.
,
Law
,
B. K.
, and
Zhang
,
W. B.
,
2000
,
Demonstration of integrated longitudinal and lateral control for the operation of automated vehicles in platoons
,
IEEE Trans. Control Syst. Technol.
,
8
(
4
),
695
708
.
7.
No
,
T. S.
,
Chong
,
K. T.
, and
Roh
,
D. H.
,
2001
,
A Lyapunov function approach to longitudinal control of vehicles in a platoon
,
IEEE Trans. Veh. Technol.
,
50
(
1
),
116
124
.
8.
Swaroop, D., 1997, String stability of interconnected systems: An application to platooning in automated highway systems. Technical Report UCB-ITS-PRR-97-14, PATH Research Center, University of California.
9.
Swaroop
,
D.
,
Hedrick
,
J. K.
, and
Choi
,
S. B.
,
2001
,
Direct adaptive longitudinal control of vehicle platoons
.
IEEE Trans. Veh. Technol.
,
50
(
1
),
150
161
.
10.
Sheikholeslam, S. E., and Desoer, C. A., 1989, Longitudinal control of a platoon of vehicles I: Linear model. Technical Report UCB-ITS-PRR-89-3, PATH Research Center, University of California.
11.
Sheikholeslam, S. E., and Desoer, C. A., 1990, Longitudinal control of a platoon of vehicles III: Nonlinear model. Technical Report UCB-ITS-PRR-90-1, PATH Research Center, University of California.
12.
Shladover
,
S. E.
,
1991
,
Longitudinal control of automotive vehicles in close-formation platoons
.
J. Dyn. Syst., Meas., Control
,
113
(
2
),
231
241
.
13.
McMahon, D. H., et al., 1992, Longitudinal vehicle controllers for IVHS: Theory and experiment. In Proceedings of the 1992 American Control Conference, volume 2, pages 1753–1757.
14.
Godbole
,
N. D.
, and
Lygeros
,
J.
,
1994
,
Longitudinal control of the lead car of a platoon
.
IEEE Trans. Veh. Technol.
,
43
(
4
),
1125
1135
.
15.
Hofmann
,
U.
,
Rieder
,
A.
, and
Dickmanns
,
E. D.
,
2001
,
Radar and vision data fusion for hybrid adaptive cruise control on highways
.
Lect. Notes Comput. Sci.
,
2095
,
125
138
.
16.
Alvarez
,
L.
, and
Horowitz
,
R.
,
1999
,
Safe platooning in automated highway systems. Part I: Safety regions design
.
Veh. Syst. Dyn.
,
32
(
1
),
23
56
.
17.
Swaroop
,
D.
,
Hedrick
,
J. K.
,
Chien
,
C. C.
, and
Ioannou
,
P.
,
1994
,
A comparison of spacing and headway control laws for automatically controlled vehicles
.
Veh. Syst. Dyn.
,
23
(
8
),
597
626
.
18.
Bevly
,
D. M.
,
Gerdes
,
J. C.
, and
Wilson
,
C.
,
2002
,
The use of GPS based velocity measurements for measurement of sideslip and wheel slip
.
Veh. Syst. Dyn.
,
38
(
2
),
127
148
.
19.
Hirschberg
,
W.
,
Rill
,
G.
, and
Weinfurter
,
H.
,
2002
,
User-appropriate tyre-modelling for vehicle dynamics in standard and limit situations
.
Veh. Syst. Dyn.
,
38
(
2
),
103
125
.
20.
McMahon, D. H., and Hedrick, J. K., 1989, Longitudinal model development for automated road-way vehicles. Technical Report UCB-ITS-PRR-89-5, PATH Research Center, University of California.
21.
Dautray, R., and Lions, J. L., Analyze mathe´matique et calcul scientifique pour les sciences et les techniques, volume 8. Masson, 1985.
22.
Press, W. H., Teukolsky, S. A., and Vetterling, W. T., 1990, Numerical Recipes in Fortran 77: The Art of Scientific Computing, chapter Adaptive Stepsize Control for Runge-Kutta methods. Cambridge University Press.
23.
Charles, C. K., and Guanrong, C., 1987, Kalman filtering with real-time applications. Springer.
24.
Papoulis A., 1977, Signal analysis. McGraw-Hill, New-York.
You do not currently have access to this content.