In this work an efficient dynamics algorithm is developed, which is applicable to a wide range of multibody systems, including underactuated systems, branched or tree-topology systems, robots, and walking machines. The dynamics algorithm is differentiated with respect to the input parameters in order to form sensitivity equations. The algorithm makes use of techniques and notation from the theory of Lie groups and Lie algebras, which is reviewed briefly. One of the strengths of our formulation is the ability to easily differentiate the dynamics algorithm with respect to parameters of interest. We demonstrate one important use of our dynamics and sensitivity algorithms by using them to solve difficult optimal control problems for underactuated systems. The algorithms in this paper have been implemented in a software package named Cstorm (Computer simulation tool for the optimization of robot manipulators), which runs from within Matlab and Simulink. It can be downloaded from the website http://www.eng.uci.edu/bobrow/

1.
Pandy, M. G., and Anderson, F. C., 2000, “Dynamic simulation of human movement using large-scale models of the body,” Proceedings of the 2000 IEEE Conference on Robotics and Automation (San Francisco, CA), IEEE, Apr., pp. 676–680.
2.
van-de Panne, M., Laszlo, J., Huang, P., and Faloutsos, P., 2000, “Towards agile animated characters,” Proceedings of the 2000 IEEE Conference on Robotics and Automation, San Francisco, CA, IEEE, Apr. pp. 682–687.
3.
Hooker
,
W. W.
, and
Margulies
,
G.
,
1965
, “
The dynamical attitude equations for an n-body satellite
,”
J. Astronaut. Sci.
,
12
, No.
4
, pp.
123
128
.
4.
Uicker, J. J., 1965, “On the dynamic analysis of spatial linkages using 4×4 matrices,” Ph.D. thesis, Northwestern University.
5.
Stepanenko
,
Y.
, and
Vukobratovic
,
M.
,
1976
, “
Dynamics of articulated open-chain active mechanisms
,”
Math. Biosci.
,
28
, No.
1–2
, pp.
137
170
.
6.
Orin
,
D.
,
McGhee
,
R.
,
Vukobratovic
,
M.
, and
Hartoch
,
G.
,
1979
, “
Kinematic and kinetic analysis of open-chain linkages utilizing newton-euler methods
,”
Math. Biosci.
,
43
, No.
1–2
, pp.
107
130
.
7.
Luh
,
J.
,
Walker
,
M.
, and
Paul
,
R.
,
1980
, “
On-line computational scheme for mechanical manipulators
,”
ASME J. Dyn. Syst., Meas., Control
,
102
, No.
2
, pp.
69
76
.
8.
Hollerbach
,
J. M.
,
1980
, “
A recursive lagrangian formulation of manipulator dynamics and a comparative study of dynamics formulation complexity
,”
IEEE Trans. Syst. Man Cybern.
,
10
, No.
11
, pp.
730
736
.
9.
Silver
,
W. M.
,
1982
, “
On the equivalance of lagrangian and newton-euler dynamics for manipulators
,”
Int. J. Robot. Res.
,
1
, No.
2
, pp.
118
128
.
10.
Balafoutis
,
C. A.
,
Misra
,
P.
, and
Patel
,
R. V.
,
1986
, “
Recursive evaluation of linearized robot dynamic models
,”
IEEE J. Rob. Autom.
,
RA-2
, No.
3
, pp.
146
155
.
11.
Murray
,
J. J.
, and
Neuman
,
C. P.
,
1986
, “
Linearization and sensitivity models of the newton-euler dynamic robot model
,”
ASME J. Dyn. Syst., Meas., Control
,
108
, No.
3
, pp.
272
276
.
12.
Martin
,
B. J.
, and
Bobrow
,
J. E.
,
1999
, “
Minimum effort motions for open-chain manipulators with task-dependent end-effector constraints
,”
Int. J. Robot. Res.
,
18
, No.
2
, pp.
213
224
.
13.
Featherstone, R., 1987, Robot dynamics algorithms, Kluwer, Boston.
14.
Rodriguez
,
G.
,
1987
, “
Kalman filtering, smoothing and recursive robot arm forward and inverse dynamics
,”
IEEE J. Rob. Autom.
,
RA-3
, No.
6
, pp.
510
521
.
15.
Rodriguez
,
G.
,
Jain
,
A.
, and
Kreutz-Delgado
,
K.
,
1991
, “
A spatial operator algebra for manipulator modeling and control
,”
Int. J. Robot. Res.
,
5
, No.
4
, pp.
510
521
.
16.
Jain
,
A.
, and
Rodriguez
,
G.
,
1993
, “
An analysis of the kinematics and dynamics of underactuated manipulators
,”
IEEE J. Rob. Autom.
,
9
, No.
4
, pp.
411
421
.
17.
Featherstone
,
R.
,
1999
, “
A divide-and-conquer articulated-body algorithm for parallel ologn calculation of rigid body dynamics. part 1: Basic algorithm
,”
Int. J. Robot. Res.
,
18
, No.
9
, pp.
867
875
.
18.
Park
,
F. C.
,
Bobrow
,
J. E.
, and
Ploen
,
S. R.
,
1995
, “
A lie group formulation of robot dynamics
,”
Int. J. Robot. Res.
,
14
, No.
6
, pp.
609
618
.
19.
Brockett, R. W., 1983, “Robotic manipulators and the product of exponentials formula,” Proc. of Int. Symposium on the Mathematical Theory of Networks and Systems, Beer Sheba, Israel, pp. 120–129.
20.
Li, Z., 1989, “Kinematics, planning and control of dextrous robot hands,” Ph.D. thesis, University of California, Berkeley.
21.
Ploen
,
S. R.
, and
Park
,
F. C.
,
1999
, “
Coordinate invariant algorithms for robot dynamics
,”
IEEE Trans. Rob. Autom.
,
15
, No.
6
, pp.
1130
1135
.
22.
Chen
,
IM
, and
Yang
,
G.
,
1998
, “
Automatic model generation for modular reconfigurable robot dynamics
,”
ASME J. Dyn. Syst., Meas., Control
,
120
, No.
3
, pp.
346
352
.
23.
Chen
,
IM
,
Yeo
,
S. H.
,
Chen
,
G.
, and
Yang
,
G.
,
1999
, “
Kernel for modular robot applications: automatic modeling techniques
,”
Int. J. Robot. Res.
,
18
, No.
2
, pp.
225
242
.
24.
Spivak, M., 1965, Calculus on manifolds, The Benjamin/Cummings Publishing Co.
25.
Murray, R. M., Li, Z., and Sastry, S. S., 1994, A mathematical introduction to robotic manipulation, CRC Press.
26.
Sohl, G. A., and Bobrow, J. E., 1999, “Optimal motions for underactuated manipulators,” ASME Design Technical Conferences, Las Vegas, Nevada, ASME, Sept.
27.
Wang, C-Y. E., Timoszyk, W. K., and Bobrow, J. E., 1999, “Weightlifting motion planning for a puma 762 robot,” Proceedings of the 1999 IEEE Conference on Robotics and Automation, Detroit, MI, IEEE, May, pp. 480–485.
28.
Spong, M. W., 1994, “Swing up control of the acrobot,” Proceedings 1994 IEEE International Conference on Robotics and Automation, Los Alamitos, CA, IEEE, May, pp. 2356–2361.
You do not currently have access to this content.