The problem of the design of an output feedback second-order sliding mode control for a class of nonlinear systems affine in the control law with non-matched uncertainties is considered in this paper. An observer-based backstepping design procedure is followed to construct a suitable sliding manifold that guarantees the attainment of a tracking control objective. The construction of the sliding manifold is performed so that the problem of steering the sliding quantity to zero in finite time turns out to be solvable locally through a second-order sliding mode control approach, as in the conventional matched uncertainty case, and the associated zero dynamics is minimum phase. On the other hand, the observer operates in first-order sliding mode, also fed by the control signal generated by the backstepping-second-order sliding mode algorithm. This signal presents the advantage of being continuous by virtue of the second-order sliding mode nature of the controller, enabling the fast convergence to zero of the observation error.

1.
DeCarlo
,
R. A.
,
Zak
,
S. H.
, and
Matthews
,
G. P.
,
1988
, “
Variable Structure Control of Nonlinear Multivariable Systems: A Tutorial
,”
Proc. IEEE
,
76
, pp.
212
232
.
2.
Hung
,
J. Y.
,
Gao
,
W.
, and
Hung
,
J. C.
,
1993
, “
Variable Structure Control: A Survey
,”
IEEE Trans. Ind. Electron.
,
40
, pp.
2
22
.
3.
Garofalo, F., and Glielmo, L., eds., 1996, Robust Control via Variable Structure and Lyapunov Techniques, Lecture Notes in Control and Information Sciences, 217, Springer-Verlag.
4.
Young, K. D., and O¨zgu¨ner, U¨., eds., 1999, “Variable Structure, Sliding Mode and Nonlinear Control, ” Lecture Notes in Control and Information Sciences, 247, Springer-Verlag, London.
5.
Young
,
K. D.
,
Utkin
,
V. I.
, and
O¨zgu¨ner
,
U¨.
,
1999
, “
A Control Engineer's Guide to Sliding Mode Control
,”
IEEE Trans. Control Syst. Technol.
,
7
, No.
31
, pp.
328
342
.
6.
Bartolini
,
G.
,
Ferrara
,
A.
, and
Usai
,
E.
,
1997
, “
Applications of a Suboptimal Discontinuous Control Algorithm for Uncertain Second Order System
,”
Int. J. Robust Nonlinear Control
,
7
, pp.
299
320
.
7.
Levant
,
A.
,
1993
, “
Sliding Order and Sliding Accuracy in Sliding Mode Control
,”
Int. J. Contr.
,
58
, pp.
1247
1263
.
8.
Levant
,
A.
,
1998
, “
Robust Exact Differentiation via Sliding Mode Technique
,”
Automatica
,
34
, pp.
379
384
.
9.
Qu, Z., 1994, “A New Generic Procedure of Designing Robust Control for Nonlinear Uncertain Systems: Beyond the Back-stepping Design,” Proc. IEEE Workshop on Robust Control via Variable Structure and Lyapunov Techniques, Benevento, Italy, pp. 174–181.
10.
Won
,
M.
, and
Hedrick
,
K.
,
1996
, “
Multiple-surface Sliding Control of a Class of Uncertain Nonlinear Systems
,”
Int. J. Control
,
64
, No.
41
, pp.
693
706
.
11.
Takahashi
,
R. H. C.
, and
Peres
,
P. L. D.
,
1999
, “
H2 Guaranteed Cost-switching Surface Design for Sliding Modes with Nonmatching Disturbances
,”
IEEE Trans. Autom. Control
,
44
, No.
11
, pp.
2214
2218
.
12.
Ferrara
,
A.
, and
Giacomini
,
L.
,
2000
, “
Control of a Class of Mechanical Systems with Uncertainties via a Constructive Adaptive/second Order VSC Approach
,”
ASME J. Dyn. Syst., Meas., Control
,
122
, pp.
33
39
.
13.
Kokotovic´, P. V., Kanellakopoulos, I., and Morse, A. S., 1991, “Adaptive Feedback Linearization of Monlinear Systems,” Foundations of Adaptive Control, P. V. Kokotovic´, Springer-Verlag, New York, pp. 311–346.
14.
Freeman, R. A., 1992, “A Backstepping Design of Robust Globally Stabilizing Feedback Compensators for Nonlinear Systems,” MS. thesis, University of Illinois, Urbana-Champaign.
15.
Krstic´, M., Kanellakopoulos, I., and Kokotovic´, P. V., 1995, Nonlinear and Adaptive Control Design, New York.
16.
Bartolini
,
G.
,
Ferrara
,
A.
,
Giacomini
,
L.
, and
Usai
,
E.
,
2000
, “
Properties of a Combined Backstepping/second Order Sliding Mode Control Algorithm for Some Classes of Uncertain Nonlinear Systems
,”
Trans. on Autom. Contr.
45
, No.
7
, pp.
1334
1341
.
17.
Jankovic
,
M.
,
1997
, “
Adaptive Nonlinear Output Feedback Tracking with a Partial High-gain Observer and Backstepping
,”
IEEE Trans. Autom. Control
,
42
, pp.
106
113
.
18.
Ahmed-Ali
,
T.
, and
Lamnabhi-Lagarrigue
,
F.
,
1999
, “
Sliding Observer-controller Design for Uncertain Triangular Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
44
, No.
6
, pp.
1244
1249
.
19.
Atassi
,
A. N.
, and
Khalil
,
H. K.
,
1999
, “
A Separation Principle for the Stabilization of a Class of Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
44
, No.
9
, pp.
1672
1687
.
20.
Isidori, A., 1989, Nonlinear Control Systems: An Introduction, 2nd ed. Springer-Verlag, Berlin-New York.
21.
Utkin, V. I., 1992, Sliding Modes in Control and Optimization, Springer-Verlag, Berlin.
22.
Bartolini
,
G.
,
Ferrara
,
A.
, and
Usai
,
E.
,
1997
, “
Output Tracking Control of Uncertain Nonlinear Second-Order Systems
,”
Automatica
,
33
, No.
12
, pp.
2203
2212
.
23.
Bartolini
,
G.
,
Ferrara
,
A.
, and
Usai
,
E.
,
1998
, “
Chattering Avoidance by Second-order Sliding Modes Control
,”
IEEE Trans. Autom. Control
,
43
, pp.
241
246
.
24.
Kwatny
,
H. G.
, and
Kim
,
H.
,
1990
, “
Variable Structure Regulation of Partially Linearizable Dynamics
,”
Syst. Control Lett.
,
15
, pp.
67
80
.
25.
Haskara
,
I˙.
,
O¨zgu¨ner
,
U¨.
, and
Utkin
,
V.
,
1998
, “
On Sliding Mode Observers via Equivalent Control Approach
,”
Int. J. Control
,
71
, No.
6
, pp.
1051
1067
.
26.
Slotine
,
J.-J. E.
,
Hedrick
,
J. K.
, and
Misawa
,
E. A.
,
1987
, “
On Sliding Observers for Nonlinear Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
109
, pp.
245
252
.
27.
Yuan
,
J.
,
1996
, “
A New Adaptive Robot Controller Taking Account of Motor Dynamics
,”
ASME J. Dyn. Syst., Meas., Control
,
118
, pp.
390
393
.
You do not currently have access to this content.