A study is presented on applications of computational intelligence (CI) techniques for monitoring and prognostics of machinery conditions. The machine condition is assessed through an energy-based feature, termed as “energy index,” extracted from the vibration signals. The progression of the “monitoring index” is predicted using the CI techniques, namely, recursive neural network (RNN), adaptive neurofuzzy inference system (ANFIS), and support vector regression (SVR). The proposed procedures have been evaluated through benchmark data sets for one-step-ahead prediction. The prognostic effectiveness of the techniques has been illustrated through vibration data set of a helicopter drivetrain system gearbox. The prediction performance of SVR was better than RNN and ANFIS. The improved performance of SVR can be attributed to its inherently better generalization capability. The training time of SVR was substantially higher than RNN and ANFIS. The results are helpful in understanding the relationship of machine conditions, the corresponding indicating feature, the level of damage or degradation, and their progression.

1.
Vachtsevanos
,
G.
,
Lewis
,
F. L.
,
Roemer
,
M.
,
Hess
,
A.
, and
Wu
,
B.
, 2006,
Intelligent Fault Diagnosis and Prognosis for Engineering Systems
,
Wiley
,
New York
.
2.
Jardine
,
A. K. S.
,
Lin
,
D.
, and
Banjevic
,
D.
, 2006, “
A Review on Machinery Diagnostics and Prognostics Implementing Condition-Based Maintenance
,”
Mech. Syst. Signal Process.
0888-3270,
20
, pp.
1483
1510
.
3.
Heng
,
A.
,
Zhang
,
S.
,
Tan
,
A. C. C.
, and
Mathew
,
J.
, 2009, “
Rotating Machinery Prognostics: State of the Art, Challenges and Opportunities
,”
Mech. Syst. Signal Process.
0888-3270,
23
, pp.
724
739
.
4.
Chelidze
,
D.
,
Cusumano
,
J. P.
, and
Chattterjee
,
A.
, 2002, “
A Dynamical Systems Approach to Damage Evolution Tracking, Part 1: Description and Experimental Application
,”
ASME J. Vibr. Acoust.
0739-3717,
124
, pp.
250
257
.
5.
Cusumano
,
J. P.
,
Chelidze
,
D.
, and
Chattterjee
,
A.
, 2002, “
A Dynamical Systems Approach to Damage Evolution Tracking, Part 2: Model-Based Validation and Interpretation
,”
ASME J. Vibr. Acoust.
0739-3717,
124
, pp.
258
264
.
6.
Hardman
,
W.
,
Hess
,
A.
, and
Sheaffer
,
J.
, 1999, “
SH-60 Helicopter Integrated Diagnostic System (HIDS) Program-Diagnostic and Prognostic Development Experience
,”
Proceedings of the IEEE Aerospace Conference
, Aspen, CO, Mar. 6–13, pp.
473
491
.
7.
Hardman
,
W.
, 2004, “
Mechanical and Propulsion Systems Prognostics: U.S. Navy Strategy and Demonstration
,”
JOM
1047-4838,
56
(
3
), pp.
21
27
.
8.
Kacprzynski
,
G. J.
,
Sarlashkar
,
A.
,
Roemer
,
M. J.
,
Hess
,
A.
, and
Hardman
,
W.
, 2004, “
Predicting Remaining Life by Fusing the Physics of Failure Modeling With Diagnostics
,”
JOM
1047-4838,
56
(
3
), pp.
29
35
.
9.
Schwabacher
,
M.
, and
Goebel
,
K.
, 2007, “
A Survey of Artificial Intelligence for Prognostics
,”
Proceedings of the AAAI 2007 Fall Symposium on Artificial Intelligence for Prognostics
, Westin Arlington Gateway, Arlington, VA, Nov. 9–11.
10.
Li
,
L.
,
Logan
,
K. P.
,
Cartes
,
D. A.
, and
Srivastava
,
S. K.
, 2007, “
Fault Detection, Diagnostics, and Prognostics: Software Agent Solutions
,”
IEEE Trans. Veh. Technol.
0018-9545,
56
, pp.
1613
1622
.
11.
Li
,
C. J.
, and
Lee
,
H.
, 2005, “
Gear Fatigue Crack Prognosis Using Embedded Model, Gear Dynamic Model and Fracture Mechanics
,”
Mech. Syst. Signal Process.
0888-3270,
19
, pp.
836
846
.
12.
Samanta
,
B.
, 2004, “
Gear Fault Detection Using Artificial Neural Networks and Support Vector Machines With Genetic Algorithms
,”
Mech. Syst. Signal Process.
0888-3270,
18
, pp.
625
644
.
13.
Samanta
,
B.
, and
Nataraj
,
C.
, 2009, “
Use of Particle Swarm Optimization for Machinery Fault Detection
,”
Eng. Applic. Artif. Intell.
0952-1976,
22
, pp.
308
316
.
14.
Tse
,
P.
, and
Atherton
,
D.
, 1999, “
Prediction of Machine Deterioration Using Vibration Based Fault Trends and Recurrent Neural Networks
,”
ASME J. Vibr. Acoust.
0739-3717,
121
, pp.
355
362
.
15.
Zakrajsek
,
J.
,
Townshed
,
D.
,
Lewicki
,
D.
,
Decker
,
H.
, and
Handschuh
,
R.
, 1995, “
Transmission Diagnostic Research at NASA Langley Research Center
,”
IMechE Conference Transactions, Second International Conference on Gearbox Noise, Vibration and Diagnostics
, London, UK, pp.
1
14
.
16.
Wang
,
W. Q.
,
Golnaraghi
,
M. F.
, and
Ismail
,
F.
, 2004, “
Prognosis of Machine Health Condition Using Neuro-Fuzzy Systems
,”
Mech. Syst. Signal Process.
0888-3270,
18
, pp.
813
831
.
17.
Wang
,
W.
,
Ismail
,
F.
, and
Golnaraghi
,
F.
, 2004, “
A Neuro-Fuzzy Approach to Gear System Monitoring
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
12
, pp.
710
723
.
18.
Wang
,
W.
, 2007, “
An Adaptive Predictor for Dynamic System Forecasting
,”
Mech. Syst. Signal Process.
0888-3270,
21
, pp.
809
823
.
19.
Al-Balushi
,
K. R.
, and
Samanta
,
B.
, 2002, “
Gear Fault Diagnosis Using Energy-Based Features of Acoustic Emission Signals
,”
Proc. Inst. Mech. Eng., Part I: Journal of Systems and Control Engineering
,
216
, pp.
249
263
.
20.
Samanta
,
B.
, and
Nataraj
,
C.
, 2008, “
Prognostics of Machine Condition Using Soft Computing
,”
Rob. Comput.-Integr. Manufact.
0736-5845,
24
, pp.
816
823
.
21.
De Gooijer
,
J. G.
, and
Hyndman
,
R. J.
, 2006, “
25 Years of Time Series Forecasting
,”
Int. J. Forecast.
0169-2070,
22
, pp.
443
473
.
22.
Jang
,
J. S. R.
, 1993, “
ANFIS: Adaptive-Network-Based Fuzzy Inference System
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
23
, pp.
665
685
.
23.
Vapnik
,
V. N.
, 1999, “
An Overview of Statistical Learning Theory
,”
IEEE Trans. Neural Netw.
1045-9227,
10
, pp.
988
1000
.
24.
Gunn
,
S. R.
, 1998, “
Support Vector Machines for Classification and Regression
,” Department of Electrical and Computer Science, University of Southampton, Technical Report.
25.
Smola
,
A. J.
, and
Schölkopf
,
B.
, 2004, “
A Tutorial on Support Vector Regression
,”
Stat. Comput.
0960-3174,
14
, pp.
199
222
.
26.
Thissen
,
U.
,
van Brakel
,
R.
,
de Weijer
,
A. P.
,
Melssen
,
W. J.
, and
Buydens
,
L. M. C.
, 2003, “
Using Support Vector Machines for Time Series Prediction
,”
Chemom. Intell. Lab. Syst.
0169-7439,
69
, pp.
35
49
.
27.
RWC Belgium World Data Center
, Online Sunspot Data Archive, SIDC, http://sidc.oma.be/index.php3http://sidc.oma.be/index.php3.
28.
Akaike
,
H.
, 1974, “
A New Look at the Statistical Model Identification
,”
IEEE Trans. Autom. Control
0018-9286,
19
, pp.
716
723
.
You do not currently have access to this content.