Boundary value problems posed over thin solids are often amenable to a dimensional reduction in that one or more spatial dimensions may be eliminated from the governing equation. One of the popular methods of achieving dimensional reduction is the Kantorovich method, where based on certain a priori assumptions, a lower-dimensional problem over a ‘mid-element’ is obtained. Unfortunately, the mid-element geometry is often disjoint, and sometimes ill defined, resulting in both numerical and automation problems. A natural generalization of the mid-element representation is a skeletal representation. We propose here a generalization of the mid-element based Kantorovich method that exploits the unique topologic and geometric properties of the skeletal representation. The proposed method rests on a quasi-disjoint Voronoi decomposition of a domain induced by its skeletal representation. The generality and limitations of the proposed method are discussed using the Poisson’s equation as a vehicle.

1.
Donaghy, R. J., Cune, W. M., Bridgett, S. J., Armstrong, C. G., Robinson, D. J., McKeag, R. M., 1996, “Dimensional Reduction of Analysis Models,” 5th International Meshing Roundtable, Sandia National Laboratories, pp. 307–320.
2.
Kantorovich, L. V., and Krylov, V. I., 1964, Approximate Methods of Higher Analysis, Interscience, New York.
3.
Pilkey, W. D., and Wunderlich, W., 1994, Mechanics of Structures: Variational and Computational Methods, CRC Press, New York.
4.
Shames, I. H., and Dym, C. L., 1985, Energy and Finite Element Methods in Structural Mechanics, McGraw Hill, New York.
5.
Reddy, J. N., 1984, Energy and Variational Methods in Applied Mechanics, John Wiley and Sons, New York.
6.
Babuska
,
I.
,
Lee
,
I.
, and
Schwab
,
C.
,
1994
, “
On the A Posteriori Estimation of the Modeling Error for the Heat Conduction in a Plate and its Use for Adaptive Hierarchical Modeling
,”
Appl. Numer. Math.
,
14
, pp.
5
21
.
7.
Wang, C. M., Reddy, J. N., and Lee, K. H., 2000, Shear Deformable Beams and Plates: Relationship to Classical Solutions, Elsevier Science, London.
8.
Strang, G., and Fix, G. J., 1973, An Analysis of the Finite Element Method, Prentice-Hall, New York.
9.
Reissner
,
E.
,
1985
, “
Reflections on the Theory of Elastic Plates
,”
J. Appl. Mech.
,
38
(
11
), pp.
1453
1464
.
10.
Vogelius
,
M.
, and
Babuska
,
I.
,
1981
, “
On a Dimensional reduction Method I. The Optimal Selection of Basis Functions
,”
Math. Comput.
,
37
(
155
), pp.
31
46
.
11.
Madureira, A. L., 1999, “Asymptotics and Hierarchical Modeling of Thin Domains,” Ph.D. thesis, Department of Mathematics, The Pennsylvania State University.
12.
Armstrong
,
C. G.
,
1994
, “
Modeling Requirements for Finite-Element Analysis
,” Comput.-Aided Des., 26(7) .
13.
Choi
,
H. I.
,
Choi
,
S. W.
, and
Moon
,
H. P.
,
1997
, “
Mathematical Theory of Medial Axis Transform
,”
Pac. J. Math.
,
181
(
1
), pp.
57
88
.
14.
Sherbrooke
,
E. C.
,
Patrikalakis
,
N. M.
, and
Wolter
,
F-E.
,
1996
, “
Differential and Topological Properties of Medial Axis Transforms
,”
Graph. Models Image Process.
,
58
(
6
), pp.
574
592
.
15.
Tam
,
T. K. H.
, and
Armstrong
,
C. G.
,
1991
, “
2D Finite Element Mesh Generation by Medial Axis Subdivision
,”
Adv. Eng. Software
56
(
13
), pp.
313
324
.
16.
Armstrong, C. G., Robinson, D. J., McKeag, R. M., Li, T. S., Bridgett, S. J., Donaghy, R. J., and McGleenan, C. A., 1995, “Medials for Meshing and More,” Proceedings, 4th International Meshing Roundtable, Sandia National Laboratories, Albuquerque.
17.
Price
,
M. A.
, and
Armstrong
,
C. G.
,
1995
, “
Hexahedral Mesh Generation by Medial Surface Subdivision: Part I, Solids With Convex Edges
,”
Int. J. Numer. Methods Eng.
,
38
(
19
), pp.
3335
3359
.
18.
Armstrong, C. G., Bridgett, S. J., Donaghy, R. J., McCune, R. W., McKeag, R. M., and Robinson, D. J., 1998, “Techniques for Interactive and Automatic Idealization of CAD Models,” Numerical Grid Generation in Computational Field Simulations, Ed. M. Cross, B. K. Soni, J. F. Thompson, J. Hauser, P. R. Eiseman, Proceedings of the 6th International Conference, held at the University of Greenwich, pp. 643–662.
19.
Monaghan, D. J., 1998, “Coupling 1D Beams to 3D Bodies,” Proceedings, 7th International Meshing Roundtable, Sandia National Lab, pp. 285–293.
20.
Sheffer A., Etzion, M., Rappoport, A., and Bercovier, M., 1998, “Hexahedral Mesh Generation using Voronoi Skeletons,” Proceedings of the Seventh International Meshing Roundtable, Michigan.
21.
Armstrong, C. G., and Bradley, B., 1999, “Design Optimization By Incremental Modification Model,” Proceedings, 8th International Meshing Roundtable, South Lake Tahoe, CA, U.S.A., pp. 293–298.
22.
Shim, K. W., Monaghan, D. J., and Armstrong, C. G., 2001, “Mixed Dimensional Coupling in Finite Element Stress Analysis,” Proceedings, 10th International Meshing Roundtable, Sandia National Laboratories, pp. 269–277.
23.
Onodera, M., and Nishigaki, I., 2001, “
Medial Surface Generation Technique for CAD-CAE Coupling,” Transactions of the Japan Society for Computational Engineering and Science.
24.
Calabi
,
L.
, and
Hartnett
,
W. E.
,
1968
, “
Shape Recognition, Prairie Fires, Convex Deficiencies and Skeletons
,”
Am. Math. Monthly
,
75
, pp.
335
342
.
25.
Meshkat
,
S. N.
, and
Sakkas
,
C. M.
,
1987
, “
Voronoi Diagram for Multiply-Connected Polygonal Domains II: Implementation and application
,”
IBM J. Res. Dev.
,
31
(
3
), pp.
373
381
.
26.
Srinivasan
,
V.
, and
Nackman
,
L. R.
,
1987
, “
Voronoi Diagram for Multiply-Connected Polygonal Domains I: Algorithm
,”
IBM J. Res. Dev.
,
31
(
3
), pp.
361
372
.
27.
Ramanathan
,
M.
, and
Gurumoorthy
,
B.
,
2002
, “
Constructing Medial Axis Transform of Planar Domains with Curved Boundaries
,”
Comput.-Aided Des.
,
35
, pp.
619
632
.
28.
Sapidis, N. S., and Perucchio, R., 1991, “Domain Delanuay Tetrahedrization of Arbitrarily Shaped Curved Polyhedra Defined in a Solid Modeling System,” Proc. Symposium on Solid Modeling Foundations and CAD/CAM Application, Ed. J. Rossignac and J. Turner, pp. 465–480.
29.
Hoffman, C. M., 1994, “How to Construct the Skeleton of CSG Objects,” Computer-Aided Surface Geometry and Design, Oxford University Press, edited by Bowyer, A., pp. 421–437.
30.
Turkiyyah
,
G. M.
,
Storti
,
D.
,
Ganter
,
M.
,
Chen
,
H.
, and
Vimawala
,
M.
,
1997
, “
An Accelerated Triangulation Method for Computing the Skeletons of Free-form Solid Models
,”
Comput.-Aided Des.
29
(
1
), pp.
5
19
.
31.
Etzion, M., and Rappoport, A., 1999, “Computing the Voronoi Diagram of a 3-D Polyhedron by Separate Computation of its Symbolic and Geometric Parts,” Proceedings, Fifth Symposium on Solid Modeling, Ann Arbor, MI, pp. 167–178.
32.
Etzion
,
M.
, and
Rappoport
,
A.
,
2002
, “
Computing Voronoi Skeletons of a 3-D Polyhedron by Space Subdivision
,”
Computational Geometry
,
21
, pp.
87
120
.
33.
Blum
,
H.
, and
Nagel
,
R. N.
,
1978
, “
Shape Description using Weighted Symmetric Axis Features
,”
Pattern Recogn.
,
10
, pp.
167
180
.
34.
Nackman
,
L. R.
,
1982
, “
Curvature Relations in Three-Dimensional Symmetric Axes
,”
Comput. Graph. Image Process.
,
20
, pp.
43
57
.
35.
Bronshtein, I. N., and Semendyayev, K. A., 1985, Handbook of Mathematics, Van Nostrand Reinhold Company, New York, NY.
36.
Kim
,
D-S.
,
Hwang
,
I-K.
, and
Park
,
B-J.
,
1995
, “
Representing the Voronoi Diagram of a Simple Polygon using Rational Quadratic Bezier Curves
,” Comput.-Aided Des., 27(8).
37.
Pilkey, W. D., 2002, Analysis and Design of Elastic Beams: Computational Methods, John Wiley & Sons, New York.
38.
Chou, P. C., and Pagano, N. J., 1992, Elasticity: Tensor, Dyadic and Engineering Approaches, Dover Publications, New York.
39.
Rezayat
,
M.
,
1996
, “
Midsurface Abstraction from 3D Solids Models: General Theory and Applications
,”
Comput.-Aided Des.
28
(
11
), pp.
905
915
.
You do not currently have access to this content.