Abstract

Swarm manufacturing is an emerging manufacturing paradigm that employs a heterogeneous swarm of robots to accomplish complex hybrid manufacturing tasks. Cooperative 3D printing (C3DP), a specialized form of swarm manufacturing, enables multiple printers to collaboratively produce large-scale parts, addressing key tradeoffs in additive manufacturing, such as size, speed, quality, and cost. A fundamental challenge in C3DP is ensuring collision-free, time-optimal printing in a shared workspace. This is a complex problem that can be influenced by factors such as the number of printers, part geometry, printer positioning, mobility, and kinematics. In this article, we present SafeZone*, a collision-free and scalable C3DP framework that optimizes printing time by co-considering the geometry (area and shape) and topology (space-connectivity) of a shared workspace during layer partitioning. We first establish a conceptual framework to mathematically represent the topology of a layer through partition graphs. Then, we use a Voronoi tessellation within a constrained optimization framework to control the partition graph and minimize makespan. The Voronoi sites are associated with printer locations, allowing the framework to integrate physical constraints and facilitating solutions for systems with robotic manipulators. Physical testing in a four-printer scenario with robotic arms confirms that SafeZone* enables collision-free printing, resulting in a printing time reduction of 44.63% when compared to the single-printer scenario. Finally, numerical studies reveal trends in the optimal solutions concerning the chromatic number of their resulting partition graphs and the distribution of the printing areas among printers.

References

1.
Abdullah Alhijaily
,
Z. M. K.
, and
Bartolo
,
A. N. P.
,
2023
, “
Teams of Robots in Additive Manufacturing: A Review
,”
Virtual Phys. Prototy.
,
18
(
1
), p.
e2162929
.
2.
Rescsanski
,
S.
,
Hebert
,
R.
,
Haghighi
,
A.
,
Tang
,
J.
, and
Imani
,
F.
,
2025
, “
Towards Intelligent Cooperative Robotics in Additive Manufacturing: Past, Present, and Future
,”
Robot. Comput.-Integr. Manuf.
,
93
, p.
102925
.
3.
Poudel
,
L.
,
Marques
,
L. G.
,
Williams
,
R. A.
,
Hyden
,
Z.
,
Guerra
,
P.
,
Fowler
,
O. L.
,
Sha
,
Z.
, and
Zhou
,
W.
,
2022
, “
Toward Swarm Manufacturing: Architecting a Cooperative 3D Printing System
,”
ASME J. Manuf. Sci. Eng.
,
144
(
8
), p.
081004
.
4.
Zhang
,
K.
,
Chermprayong
,
P.
,
Xiao
,
F.
,
Tzoumanikas
,
D.
,
Dams
,
B.
,
Kay
,
S.
,
Kocer
,
B. B.
et al.,
2022
, “
Aerial Additive Manufacturing With Multiple Autonomous Robots
,”
Nature
,
609
(
7928
), pp.
709
717
.
5.
Xu
,
X.
,
Wang
,
Z.
, and
Feng
,
C.
,
2021
, “
Projector-Guided Non-Holonomic Mobile 3D Printing
,”
2021 IEEE International Conference on Robotics and Automation (ICRA)
,
Xi'an, China
, pp.
8039
8045
.
6.
Zhang
,
X.
,
Li
,
M.
,
Lim
,
J. H.
,
Weng
,
Y.
,
Tay
,
Y. W. D.
,
Pham
,
H.
, and
Pham
,
Q.-C.
,
2018
, “
Large-Scale 3D Printing by a Team of Mobile Robots
,”
Autom. Constr.
,
95
, pp.
98
106
.
7.
Khosravani
,
M. R.
, and
Haghighi
,
A.
,
2022
, “
Large-Scale Automated Additive Construction: Overview, Robotic Solutions, Sustainability, and Future Prospect
,”
Sustainability
,
14
(
15
), p.
9782
.
8.
Stone
,
R. F.
,
Ebert
,
M.
,
Zhou
,
W.
,
Akleman
,
E.
,
Krishnamurthy
,
V.
, and
Sha
,
Z.
,
2024
, “
Safezone: A Topologically-Aware Voronoi-Based Framework for Fast Collision-Free Cooperative 3D Printing
,” International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol.
88346
,
American Society of Mechanical Engineers
, p.
V02AT02A038
.
9.
Gao
,
W.
,
Zhang
,
Y.
,
Ramanujan
,
D.
,
Ramani
,
K.
,
Chen
,
Y.
,
Williams
,
C. B.
,
Wang
,
C. C.
,
Shin
,
Y. C.
,
Zhang
,
S.
, and
Zavattieri
,
P. D.
,
2015
, “
The Status, Challenges, and Future of Additive Manufacturing in Engineering
,”
Comput. Aided Des.
,
69
, pp.
65
89
.
10.
McPherson
,
J.
, and
Zhou
,
W.
,
2018
, “
A Chunk-Based Slicer for Cooperative 3D Printing
,”
Rapid Prototyping Journal
,
24
(
9
), pp.
1436
1446
.
11.
Poudel
,
L.
,
Sha
,
Z.
, and
Zhou
,
W.
,
2018
, “
Mechanical Strength of Chunk-Based Printed Parts for Cooperative 3D Printing
,”
Procedia Manuf.
,
26
, pp.
962
972
.
12.
Larsen
,
L.
,
Pham
,
V.-L.
,
Kim
,
J.
, and
Kupke
,
M.
,
2015
, “
Collision-Free Path Planning of Industrial Cooperating Robots for Aircraft Fuselage Production
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
.
13.
Fei
,
Y.
,
Fuqiang
,
D.
, and
Xifang
,
Z.
,
2004
, “
Collision-Free Motion Planning of Dual-Arm Reconfigurable Robots
,”
Robot. Comput.-Integr. Manuf.
,
20
(
4
), pp.
351
357
.
14.
Lin
,
H.-Y.
, and
Huang
,
Y.-C.
,
2021
, “
Collaborative Complete Coverage and Path Planning for Multi-robot Exploration
,”
Sensors
,
21
(
11
), p.
3709
.
15.
Gul
,
F.
,
Mir
,
A.
,
Mir
,
I.
,
Mir
,
S.
,
Islaam
,
T. U.
,
Abualigah
,
L.
, and
Forestiero
,
A.
,
2022
, “
A Centralized Strategy for Multi-Agent Exploration
,”
IEEE Access
,
10
, pp.
126871
126884
.
16.
Karapetyan
,
N.
,
Benson
,
K.
,
McKinney
,
C.
,
Taslakian
,
P.
, and
Rekleitis
,
I.
,
2017
, “
Efficient Multi-robot Coverage of a Known Environment
,”
EEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, BC, Canada
,
Sept. 24–28
.
17.
Zbiss
,
K.
,
Kacem
,
A.
,
Santillo
,
M.
, and
Mohammadi
,
A.
,
2022
, “
Automatic Collision-Free Trajectory Generation for Collaborative Robotic Car-Painting
,”
IEEE Access
,
10
, pp.
9950
9959
.
18.
Alhijaily
,
A.
,
Kilic
,
Z. M.
, and
Bartolo
,
P.
,
2023
, “
Online Cooperative Printing by Mobile Robots
,”
Virtual Phys. Prototy.
,
18
(
1
), p.
e2276257
.
19.
Alhijaily
,
A.
,
Kilic
,
Z. M.
, and
Bartolo
,
A. N. P.
,
2023
, “
Teams of Robots in Additive Manufacturing: A Review
,”
Virtual Phys. Prototy.
,
18
(
1
), p.
e2162929
.
20.
Poudel
,
L.
,
Zhou
,
W.
, and
Sha
,
Z.
,
2021
, “
Resource-Constrained Scheduling for Multi-robot Cooperative Three-Dimensional Printing
,”
ASME J. Mech. Des.
,
143
(
7
), p.
072002
.
21.
Poudel
,
L.
,
Marques
,
L. G.
,
Williams
,
R. A.
,
Hyden
,
Z.
,
Guerra
,
P.
,
Fowler
,
O. L.
,
Moquin
,
S. J.
,
Sha
,
Z.
, and
Zhou
,
W.
,
2020
, “
Architecting the Cooperative 3D Printing System
,” International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol.
83983
,
American Society of Mechanical Engineers
, p.
V009T09A029
.
22.
Elagandula
,
S.
,
Poudel
,
L.
,
Sha
,
Z.
, and
Zhou
,
W.
,
2020
, “
Multi-robot Path Planning for Cooperative 3D Printing
,” International Manufacturing Science and Engineering Conference, Vol.
84256
,
American Society of Mechanical Engineers
, p.
V001T01A034
.
23.
Poudel
,
L.
,
Zhou
,
W.
, and
Sha
,
Z.
,
2020
, “
A Generative Approach for Scheduling Multi-robot Cooperative Three-Dimensional Printing
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
6
), p.
061011
.
24.
Ebert
,
M.
,
Stone
,
R.
,
Koithan
,
J.
,
Zhou
,
W.
,
Pharr
,
M.
,
Estrin
,
Y.
,
Akleman
,
E.
,
Sha
,
Z.
, and
Krishnamurthy
,
V.
,
2025
, “
Noodleprint: Cooperative Multi-robot Additive Manufacturing With Helically Interlocked Tiles
,”
ASME J. Manuf. Sci. Eng.
,
147
(
6
), p.
061002
.
25.
Krishnamurthy
,
V.
,
Poudel
,
L.
,
Ebert
,
M.
,
Weber
,
D. H.
,
Wu
,
R.
,
Zhou
,
W.
,
Akleman
,
E.
, and
Sha
,
Z.
,
2022
, “
Layerlock: Layer-Wise Collision-Free Multi-robot Additive Manufacturing Using Topologically Interlocked Space-Filling Shapes
,”
Comput. Aided Des.
,
152
, p.
103392
.
26.
Stone
,
R. F.
,
Zhou
,
W.
,
Akleman
,
E.
,
Krishnamurthy
,
V. R.
, and
Sha
,
Z.
,
2023
, “
Print as a Dance Duet: Communication Strategies for Collision-Free Arm-Arm Coordination in Cooperative 3D Printing
,” International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol.
87295
,
American Society of Mechanical Engineers
, p.
V002T02A081
.
27.
Shen
,
H.
,
Pan
,
L.
, and
Qian
,
J.
,
2019
, “
Research on Large-Scale Additive Manufacturing Based on Multi-robot Collaboration Technology
,”
Addit. Manuf.
,
30
, p.
100906
.
28.
Jensen
,
T. R.
, and
Toft
,
B.
,
2011
,
Graph Coloring Problems
,
John Wiley & Sons
,
Hoboken, NJ
.
29.
Okabe
,
A.
,
Boots
,
B.
,
Sugihara
,
K.
, and
Chiu
,
S. N.
,
2009
,
Spatial Tessellations: Concepts and Applications of Voronoi Diagrams
,
John Wiley & Sons
,
Hoboken, NJ
.
30.
Saltzman
,
M. J.
,
2002
, “Coin-Or: An Open-Source Library for Optimization,”
Programming Languages and Systems in Computational Economics and Finance. Advances in Computational Economics
,
S. S.
Nielsen
, ed., Vol.
18
,
Springer US
,
Boston, MA
, pp.
3
32
.
You do not currently have access to this content.