Abstract

Recent advances in robotics and artificial intelligence have highlighted the potential for the integration of computational intelligence in enhancing the functionality and adaptability of robotic systems, particularly in rehabilitation. Designing robotic exoskeletons for the lower limb rehabilitation of post-stroke patients requires frequent adjustments to accommodate individual differences in leg anatomy. This complex engineering challenge necessitates a deep understanding of human physiology, robotics, and optimization to develop adaptive robotic systems and also to swiftly quantify the required adjustments and implement them for each patient. The conventional approaches, which mostly rely on heuristics and manual tuning, often struggle to achieve optimal results. This paper presents a novel method that integrates a genetic algorithm with a deep learning approach to generate a gait trajectory of the ankle joint from a six-bar linkage mechanism of fixed dimensions. Later, using the same approach, the inverse kinematics solution for this mechanism is also devised whereby, the set of the link dimensions of the six-bar linkage mechanism is obtained for the given gait trajectory of an individual to achieve customization. We simulated the kinematic behavior of the six-bar linkage mechanism within defined mechanical constraints and utilized the generated data for training a feedforward neural network and long short-term memory models. The proposed model, when trained, can produce accurate lengths for the desired gait trajectories in the sagittal plane and vice versa, which further validates our proposed approach for inverse kinematics solution. Moreover, to evaluate the efficiency of deep learning models, we have conducted an extensive error-based, comparative, and sensitivity analysis using different performance indices. The results highlight the potential of the proposed deep-learning-driven approach in the design analysis of gait rehabilitation robots.

References

1.
de Menezes
,
K. K. P.
,
Ada
,
L.
,
Teixeira-Salmela
,
L. F.
,
Scianni
,
A. A.
,
Avelino
,
P. R.
,
de Morais Faria
,
C. D. C.
, and
Nascimento
,
L. R.
,
2021
, “
Home-Based Interventions May Increase Recruitment, Adherence, and Measurement of Outcomes in Clinical Trials of Stroke Rehabilitation
,”
J. Stroke Cerebrovasc. Dis.
,
30
(
10
), p.
106022
.
2.
Kakizaki
,
T.
,
Endo
,
M.
,
Urii
,
J.
, and
Endo
,
M.
,
2017
, “
Application of Digital Human Models to Physiotherapy Training
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
3
), p.
031014
.
3.
Goher
,
K. M.
, and
Fadlallah
,
S. O.
,
2017
, “
Design, Modeling, and Control of a Portable Leg Rehabilitation System
,”
ASME J. Dyn. Syst. Meas. Control
,
139
(
7
), p.
071013
.
4.
Zhou
,
L.
,
Meng
,
W.
,
Lu
,
C. Z.
,
Liu
,
Q.
,
Ai
,
Q.
, and
Xie
,
S. Q.
,
2016
, “
Bio-Inspired Design and Iterative Feedback Tuning Control of a Wearable Ankle Rehabilitation Robot
,”
ASME J. Comput. Inf. Sci. Eng.
,
16
(
4
), p.
041003
.
5.
Maranesi
,
E.
,
Riccardi
,
G. R.
,
Di Donna
,
V.
,
Di Rosa
,
M.
,
Fabbietti
,
P.
,
Luzi
,
R.
,
Pranno
,
L.
,
Lattanzio
,
F.
, and
Bevilacqua
,
R.
,
2020
, “
Effectiveness of Intervention Based on End-Effector Gait Trainer in Older Patients With Stroke: A Systematic Review
,”
J. Am. Med. Dir. Assoc.
,
21
(
8
), pp.
1036
1044
.
6.
Zhang
,
L.
,
Jia
,
G.
,
Ma
,
J.
,
Wang
,
S.
, and
Cheng
,
L.
,
2022
, “
Short and Long-Term Effects of Robot-Assisted Therapy on Upper Limb Motor Function and Activity of Daily Living in Patients Post-Stroke: A Meta-Analysis of Randomized Controlled Trials
,”
J. Neuroeng. Rehabil.
,
19
(
1
), p.
76
.
7.
Qian
,
K.
,
Li
,
Z.
,
Zhang
,
Z.
,
Li
,
G.
, and
Xie
,
S. Q.
,
2022
, “
Data-Driven Adaptive Iterative Learning Control of a Compliant Rehabilitation Robot for Repetitive Ankle Training
,”
IEEE Robot. Autom. Lett.
,
8
(
2
), pp.
656
663
.
8.
Shah
,
M. F.
,
Hussain
,
S.
,
Goecke
,
R.
, and
Jamwal
,
P. K.
,
2023
, “
Mechanism Design and Control of Shoulder Rehabilitation Robots: A Review
,”
IEEE Trans. Med. Robot. Bionics.
,
5
(
4
), pp.
780
792
.
9.
Zhao
,
P.
,
Zhang
,
Y.
,
Guan
,
H.
,
Deng
,
X.
, and
Chen
,
H.
,
2021
, “
Design of a Single-Degree-of-Freedom Immersive Rehabilitation Device for Clustered Upper-Limb Motion
,”
ASME J. Mech. Rob.
,
13
(
3
), p.
031006
.
10.
Ibrayev
,
S.
,
Jomartov
,
A.
,
Tuleshov
,
A.
,
Jamalov
,
N.
,
Ibrayev
,
A.
,
Mukhambetkalieva
,
G.
,
Aidasheva
,
G.
, and
Kamal
,
A.
,
2020
, “
Synthesis of Four-Bar Linkage With Adjustable Crank Length for Multi-path Generation
,”
Int. J. Mech. Eng. Robot. Res.
,
9
(
4
), pp.
489
495
.
11.
Sanchez-Marin
,
F.
, and
Roda-Casanova
,
V.
,
2022
, “
An Approach for the Global Search for Top-Quality Six-Bar Dwell Linkages
,”
Mech. Mach. Theory
,
176
(
10
), p.
104974
.
12.
Alves
,
P.
,
Cruz
,
F.
,
Silva
,
L. F.
, and
Flores
,
P.
,
2015
, “Synthesis of a Mechanism for Human Gait Rehabilitation: An Introductory Approach,”
New Trends in Mechanism and Machine Science: From Fundamentals to Industrial Applications
,
F.
Viadero
and
M.
Ceccarelli
, eds.,
Springer
,
Netherlands
, pp.
121
128
.
13.
Tsuge
,
B. Y.
,
Plecnik
,
M. M.
, and
Michael McCarthy
,
J.
,
2016
, “
Homotopy Directed Optimization to Design a Six-Bar Linkage for a Lower Limb With a Natural Ankle Trajectory
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061009
.
14.
Pozo-Palacios
,
J.
,
Fulbright
,
N. J.
,
Voth
,
J. A.
, and
Van de Ven
,
J. D.
,
2023
, “
Comparison of Forward and Inverse Cam Generation Methods for the Design of Cam-Linkage Mechanisms
,”
Mech. Mach. Theory
,
190
(
12
), p.
105465
.
15.
Shao
,
Y.
,
Xiang
,
Z.
,
Liu
,
H.
, and
Li
,
L.
,
2016
, “
Conceptual Design and Dimensional Synthesis of Cam-Linkage Mechanisms for Gait Rehabilitation
,”
Mech. Mach. Theory
,
104
(
10
), pp.
31
42
.
16.
Yuan
,
L.
, and
Rastegar
,
J. S.
,
2004
, “
Kinematics Synthesis of Linkage Mechanisms With Cam Integrated Joints for Controlled Harmonic Content of the Output Motion
,”
ASME J. Mech. Des.
,
126
(
1
), pp.
135
142
.
17.
Mehdigholi
,
H.
, and
Akbarnejad
,
S.
,
2012
, “
Optimization of Watt’s Six-Bar Linkage to Generate Straight and Parallel Leg Motion
,”
Int. J. Adv. Robot. Syst.
,
9
(
1
), p.
22
.
18.
Mi
,
L.
,
Guozhi
,
M.
, and
Qing
,
L.
,
2020
, “
Mathematical Modeling and Optimization of Spiral Drum Screen in the Concrete Residue Recovery System
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
234
(
13
), pp.
2624
2630
.
19.
Bhatia
,
D.
, and
Bagci
,
C.
,
1977
, “Optimum Synthesis of Multiloop Planar Mechanisms for the Generation of Paths and Rigid-Body Positions by the Linear Partition of Design Equations”.
20.
Wang
,
H.
, and
Lu
,
J.
,
2022
, “
Research on Fractional Order Fuzzy PID Control of the Pneumatic-Hydraulic Upper Limb Rehabilitation Training System Based on PSO
,”
Int. J. Control Autom. Syst.
,
20
(
1
), pp.
310
320
.
21.
Naseri
,
H.
,
Shokoohi
,
M.
,
Jahanbakhsh
,
H.
,
Golroo
,
A.
, and
Gandomi
,
A. H.
,
2022
, “
Evolutionary and Swarm Intelligence Algorithms on Pavement Maintenance and Rehabilitation Planning
,”
Int. J. Pavement Eng.
,
23
(
13
), pp.
4649
4663
.
22.
Hu
,
Y.-F.
,
Ding
,
Y.-S.
,
Ren
,
L.-H.
,
Hao
,
K.-R.
, and
Han
,
H.
,
2015
, “
An Endocrine Cooperative Particle Swarm Optimization Algorithm for Routing Recovery Problem of Wireless Sensor Networks With Multiple Mobile Sinks
,”
Inf. Sci.
,
300
(
4
), pp.
100
113
.
23.
Khan
,
N. A.
,
Sulaiman
,
M.
, and
Lu
,
B.
,
2024
, “
ANN Based Optimization of Nano-Beam Oscillations With Intermolecular Forces and Geometric Nonlinearity
,”
Int. J. Solids Struct.
,
304
(
11
), p.
113054
.
24.
Ferrero
,
L.
,
Soriano-Segura
,
P.
,
Navarro
,
J.
,
Jones
,
O.
,
Ortiz
,
M.
,
Iáñez
,
E.
,
Azorín
,
J. M.
, and
Contreras-Vidal
,
J. L.
,
2024
, “
Brain-Machine Interface Based on Deep Learning to Control Asynchronously a Lower-Limb Robotic Exoskeleton: A Case-of-Study
,”
J. Neuroeng. Rehabil.
,
21
(
1
), p.
48
.
25.
Narayan
,
J.
, and
Dwivedy
,
S. K.
,
2022
, “
Biomechanical Study and Prediction of Lower Extremity Joint Movements Using Bayesian Regularization-Based Backpropagation Neural Network
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
1
), p.
014503
.
26.
Wu
,
D.
,
Zhang
,
R.
,
Pore
,
A.
,
Dall’Alba
,
D.
,
Ha
,
X. T.
,
Li
,
Z.
, and
Zhang
,
Y.
,
2024
, “
A Review on Machine Learning in Flexible Surgical and Interventional Robots: Where We Are and Where We Are Going
,”
Biomed. Signal Process. Control
,
93
(
6
), p.
106179
.
27.
Nabian
,
M. A.
, and
Meidani
,
H.
,
2020
, “
Physics-Driven Regularization of Deep Neural Networks for Enhanced Engineering Design and Analysis
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
1
), p.
011006
.
28.
Purwar
,
A.
, and
Chakraborty
,
N.
,
2023
, “
Deep Learning-Driven Design of Robot Mechanisms
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
6
), p.
060811
.
29.
Dering
,
M. L.
,
Tucker
,
C. S.
, and
Kumara
,
S.
,
2018
, “
An Unsupervised Machine Learning Approach to Assessing Designer Performance During Physical Prototyping
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
1
), p.
011002
.
30.
Haghighat
,
E.
,
Raissi
,
M.
,
Moure
,
A.
,
Gomez
,
H.
, and
Juanes
,
R.
,
2021
, “
A Physics-Informed Deep Learning Framework for Inversion and Surrogate Modeling in Solid Mechanics
,”
Comput. Methods Appl. Mech. Eng.
,
379
(
6
), p.
113741
.
31.
Kapovich
,
M.
, and
Millson
,
J. J.
,
2002
, “
Universality Theorems for Configuration Spaces of Planar Linkages
,”
Topology
,
41
(
6
), pp.
1051
1107
.
32.
Sharma
,
N.
, and
Kirsch
,
N.
,
2017
, “Modeling and Dynamic Optimization of a Hybrid Neuroprosthesis for Gait Restoration,”
Human Modelling for Bio-Inspired Robotics
,
J.
Ueda
and
Y.
Kurita
, eds.,
Elsevier
, pp.
139
159
.
33.
Bulatović
,
R. R.
, and
Ðorðević
,
S. R.
,
2012
, “
Optimal Synthesis of a Path Generator Six-Bar Linkage
,”
J. Mech. Sci. Technol.
,
26
(
12
), pp.
4027
4040
.
34.
Li
,
M.
,
Yan
,
J.
,
Zhao
,
H.
,
Ma
,
G.
, and
Li
,
Y.
,
2021
, “
Mechanically Assisted Neurorehabilitation: A Novel Six-Bar Linkage Mechanism for Gait Rehabilitation
,”
IEEE Trans. Neural. Syst. Rehabil. Eng.
,
29
(
5
), pp.
985
992
.
35.
Önen
,
Ü.
,
Botsalı
,
F. M.
,
Kalyoncu
,
M.
,
Tınkır
,
M.
,
Yılmaz
,
N.
, and
Şahin
,
Y.
,
2013
, “
Design and Actuator Selection of a Lower Extremity Exoskeleton
,”
IEEE/ASME Transactions on Mechatronics
,
19
(
2
), pp.
623
632
.
36.
Van Emmerik
,
R. E.
,
Ducharme
,
S. W.
,
Amado
,
A. C.
, and
Hamill
,
J.
,
2016
, “
Comparing Dynamical Systems Concepts and Techniques for Biomechanical Analysis
,”
J. Sport Health Sci.
,
5
(
1
), pp.
3
13
.
37.
Yun
,
Y.
,
Kim
,
H.-C.
,
Shin
,
S. Y.
,
Lee
,
J.
,
Deshpande
,
A. D.
, and
Kim
,
C.
,
2014
, “
Statistical Method for Prediction of Gait Kinematics With Gaussian Process Regression
,”
J. Biomech.
,
47
(
1
), pp.
186
192
.
38.
Sulaiman
,
M.
, and
Khan
,
N. A.
,
2023
, “
Predictive Modeling of Oil and Water Saturation During Secondary Recovery With Supervised Learning
,”
Phys. Fluids
,
35
(
6
), p.
064110
.
39.
Wang
,
L.
,
Ye
,
W.
,
Zhu
,
Y.
,
Yang
,
F.
, and
Zhou
,
Y.
,
2023
, “
Optimal Parameters Selection of Back Propagation Algorithm in the Feedforward Neural Network
,”
Eng. Anal. Bound. Elem.
,
151
(
6
), pp.
575
596
.
40.
Chen
,
Y.
,
Zhang
,
C.
,
Liu
,
C.
,
Wang
,
Y.
, and
Wan
,
X.
,
2022
, “
Atrial Fibrillation Detection Using a Feedforward Neural Network
,”
J. Med. Biol. Eng.
,
42
(
1
), pp.
63
73
.
41.
Khan
,
N. A.
,
Sulaiman
,
M.
, and
Lu
,
B.
,
2024
, “
Predictive Insights Into Nonlinear Nanofluid Flow in Rotating Systems: A Machine Learning Approach
,”
Eng. Comput.
,
40
(
3
), pp.
1
18
.
42.
Weber
,
P.
,
Wagner
,
W.
, and
Freitag
,
S.
,
2023
, “
Physically Enhanced Training for Modeling Rate-Independent Plasticity With Feedforward Neural Networks
,”
Comput. Mech.
,
72
(
4
), pp.
827
857
.
43.
Yang
,
B.
,
Liang
,
B.
,
Qian
,
Y.
,
Zheng
,
R.
,
Su
,
S.
,
Guo
,
Z.
, and
Jiang
,
L.
,
2024
, “
Parameter Identification of PEMFC Via Feedforward Neural Network-Pelican Optimization Algorithm
,”
Appl. Energy
,
361
(
5
), p.
122857
.
44.
Liu
,
F.
,
Dong
,
T.
,
Liu
,
Q.
,
Liu
,
Y.
, and
Li
,
S.
,
2024
, “
Combining Fuzzy Clustering and Improved Long Short-Term Memory Neural Networks for Short-Term Load Forecasting
,”
Electric Power Syst. Res.
,
226
(
1
), p.
109967
.
45.
Singh
,
M.
,
Bansal
,
S.
,
Vandana
,
Panigrahi
,
B. K.
, and
Garg
,
A.
,
2022
, “
A Genetic Algorithm and RNN-LSTM Model for Remaining Battery Capacity Prediction
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
4
), p.
041009
.
46.
Putri
,
E. R.
,
Shahab
,
M. L.
,
Iqbal
,
M.
,
Mukhlash
,
I.
,
Hakam
,
A.
,
Mardianto
,
L.
, and
Susanto
,
H.
,
2024
, “
A Deep-Genetic Algorithm (Deep-GA) Approach for High-Dimensional Nonlinear Parabolic Partial Differential Equations
,”
Comput. Math. Appl.
,
154
(
1
), pp.
120
127
.
47.
Yousef
,
R. N.
,
Khalil
,
A. T.
,
Samra
,
A. S.
, and
Ata
,
M. M.
,
2024
, “
Proposed Methodology for Gait Recognition Using Generative Adversarial Network With Different Feature Selectors
,”
Neural Comput. Appl.
,
36
(
4
), pp.
1641
1663
.
48.
Kapsalyamov
,
A.
,
Hussain
,
S.
,
Brown
,
N. A.
,
Goecke
,
R.
,
Hayat
,
M.
, and
Jamwal
,
P. K.
,
2023
, “
Synthesis of a Six-Bar Mechanism for Generating Knee and Ankle Motion Trajectories Using Deep Generative Neural Network
,”
Eng. Appl. Artif. Intell.
,
117
(
1
), p.
105500
.
You do not currently have access to this content.