Abstract

Due to the widespread adoption of personalized customization services, the application contexts within discrete manufacturing workshops have become increasingly intricate, necessitating the modern industry to evolve toward a more adaptable production trajectory. The pre-established production rules in a traditional centralized control manufacturing system present difficulties in accommodating dynamic situations. Although a multi-agent manufacturing system (MAMS) yields natural advantages in handling dynamic emergencies, the current research is limited to the computer simulation level and lacks integration with the underlying physical devices. In order to mitigate said challenges, the standardization modeling approach for the agent computing node (ACN) to facilitate the implementation of a readily deployable MAMS was proposed in the present study. Initially, adapters encompassing communication, decision, and control modules were developed within the industrial personnel computer-based computing node to accommodate the heterogeneous interface protocols of diverse machines. These adapters enable communication and interaction among machines while laying the computational foundation for the ACN. Accordingly, the models of the machine agent, the part agent, and the monitoring agent were constructed based on ACNs and could perceive the dynamic production information and support the enabling application. Subsequently, to guide ACNs in making scheduling decisions beneficial to global performance, an improved negotiation mechanism in MAMS was achieved in real-time. Finally, the proposed MAMS based on the ACN was deployed in an actual flexible machining workshop. Comparative experiments were implemented and, as exhibited from the experimental results, the proposed ACNs possessed the capabilities of achieving optimal global decision-making and facilitating straightforward deployment.

References

1.
Leitão
,
P.
, and
Restivo
,
F.
,
2006
, “
ADACOR: A Holonic Architecture for Agile and Adaptive Manufacturing Control
,”
Comput. Ind.
,
57
(
2
), pp.
121
130
.
2.
Leitão
,
P.
, and
Restivo
,
F.
,
2008
, “
A Holonic Approach to Dynamic Manufacturing Scheduling
,”
Rob Comput. Integr. Manuf.
,
24
(
5
), pp.
625
634
.
3.
Kruger
,
K.
, and
Basson
,
A.
,
2018
, “
ERLANG-Based Holonic Controller for a Palletized Conveyor Material Handling System
,”
Comput. Ind.
,
101
, pp.
120
126
.
4.
Lu
,
Y.
,
Xu
,
X.
, and
Wang
,
L.
,
2020
, “
Smart Manufacturing Process and System Automation–A Critical Review of the Standards and Envisioned Scenarios
,”
J. Manuf. Syst.
,
56
, pp.
312
325
.
5.
Wang
,
L.-C.
,
Cheng
,
C.-Y.
, and
Lin
,
S.-K.
,
2013
, “
Distributed Feedback Control Algorithm in an Auction-Based Manufacturing Planning and Control System
,”
Int. J. Prod. Res.
,
51
(
9
), pp.
2667
2679
.
6.
Zaeh
,
M. F.
,
Reinhart
,
G.
,
Ostgathe
,
M.
,
Geiger
,
F.
, and
Lau
,
C.
,
2010
, “
A Holistic Approach for the Cognitive Control of Production Systems
,”
Adv. Eng. Inform.
,
24
(
3
), pp.
300
307
.
7.
Zambrano
,
G.
,
Pach
,
C.
,
Aissani
,
N.
,
Berger
,
T.
, and
Trentesaux
,
D.
,
2011
, “
An Approach for Temporal Myopia Reduction in Heterarchical Control Architectures
,”
Proceedings - ISIE 2011: 2011 IEEE International Symposium on Industrial Electronics
,
Gdansk, Poland
,
June 27–30
, IEEE, pp.
1767
1772
.
8.
Leitão
,
P.
,
2009
, “
Agent-Based Distributed Manufacturing Control: A State-of-the-Art Survey
,”
Eng. Appl. Artificial Intell.
,
22
(
7
), pp.
979
991
.
9.
Ji
,
H.
, and
Jin
,
Y.
,
2022
, “
Knowledge Acquisition of Self-organizing Systems With Deep Multiagent Reinforcement Learning
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
2
), p.
021010
.
10.
Reaidy
,
J.
,
Massotte
,
P.
, and
Diep
,
D.
,
2006
, “
Comparison of Negotiation Protocols in Dynamic Agent-Based Manufacturing Systems
,”
Int. J. Prod. Econ.
,
99
(
1–2
), pp.
117
130
.
11.
Qin
,
Z.
, and
Lu
,
Y.
,
2021
, “
Self-Organizing Manufacturing Network: A Paradigm Towards Smart Manufacturing in Mass Personalization
,”
J. Manuf. Syst.
,
60
, pp.
35
47
.
12.
Răileanu
,
S.
, and
Borangiu
,
T.
,
2022
, “
A Review of Multi-agent Systems Used in Industrial Applications
,” International Workshop on Service Orientation in Holonic and Multi-agent Manufacturing,
Springer
, pp.
3
22
.
13.
Maoudj
,
A.
,
Bouzouia
,
B.
,
Hentout
,
A.
,
Kouider
,
A.
, and
Toumi
,
R.
,
2019
, “
Distributed Multi-agent Scheduling and Control System for Robotic Flexible Assembly Cells
,”
J. Intell. Manuf.
,
30
(
4
), pp.
1629
1644
.
14.
Sallez
,
Y.
,
Berger
,
T.
,
Raileanu
,
S.
,
Chaabane
,
S.
, and
Trentesaux
,
D.
,
2010
, “
Semi-Heterarchical Control of FMS: From Theory to Application
,”
Eng. Appl. Artificial Intell.
,
23
(
8
), pp.
1314
1326
.
15.
Stone
,
P.
, and
Veloso
,
M.
,
2000
, “
Multiagent Systems: A Survey From a Machine Learning Perspective
,”
Auton. Rob.
,
8
(
3
), pp.
345
383
.
16.
Babayany
,
A.
, and
Hey
,
D.
,
2004
, “
Solving the N-Job 3-Stage Flexible Flowshop Scheduling Problem Using an Agent-Based Approach
,”
Int. J. Prod. Res.
,
42
(
4
), pp.
777
799
.
17.
Jennings
,
N.
, and
Bussmann
,
S.
,
2004
, “
Multiagent Systems for Manufacturing Control: A Design Methodology
,”
IEEE Contor. Syst. Mag.
,
23
(
3
), pp.
61
73
.
18.
Hamidi Moghaddam
,
S.
,
Akbaripour
,
H.
, and
Houshmand
,
M.
,
2021
, “
Integrated Forward and Reverse Logistics in Cloud Manufacturing: An Agent-Based Multi-layer Architecture and Optimization Via Genetic Algorithm
,”
Prod. Eng.
,
15
(
6
), pp.
801
819
.
19.
Rehman
,
H. U.
,
Chaplin
,
J. C.
,
Zarzycki
,
L.
,
Mo
,
F.
,
Jones
,
M.
, and
Ratchev
,
S.
,
2022
, “
Service Based Approach to Asset Administration Shell for Controlling Testing Processes in Manufacturing
,”
IFAC-PapersOnLine
,
55
(
10
), pp.
1852
1857
.
20.
Shaw
,
M.
,
1987
, “
Distributed Planning in Cellular Flexible Manufacturing Systems
,”
INFOR: Inf. Syst. Oper. Res.
,
25
(
1
), pp.
13
25
.
21.
Jiang
,
Y.
, and
Li
,
Z.
,
2011
, “
Locality-Sensitive Task Allocation and Load Balancing in Networked Multiagent Systems: Talent Versus Centrality
,”
J. Parallel Distrib. Comput.
,
71
(
6
), pp.
822
836
.
22.
Goldman
,
C. V.
,
Baltaxe
,
M.
,
Chakraborty
,
D.
,
Arinez
,
J.
, and
Diaz
,
C. E.
,
2023
, “
Interpreting Learning Models in Manufacturing Processes: Towards Explainable AI Methods to Improve Trust in Classifier Predictions
,”
J. Ind. Inf. Integr.
,
33
, p.
100439
.
23.
Ulieru
,
M.
,
Brennan
,
R. W.
, and
Walker
,
S. S.
,
2002
, “
The Holonic Enterprise: A Model for Internet-Enabled Global Manufacturing Supply Chain and Workflow Management
,”
Integr. Manuf. Syst.
,
13
(
8
), pp.
538
550
.
24.
Wang
,
Y.
,
Yin
,
C.
, and
Zhang
,
Y.
,
2003
, “
A Multi-agent and Distributed Ruler Based Approach to Production Scheduling of Agile Manufacturing Systems
,”
Int. J. Comput. Integr. Manuf.
,
16
(
2
), pp.
81
92
.
25.
Maione
,
G.
, and
Naso
,
D.
,
2003
, “
A Soft Computing Approach for Task Contracting in Multi-agent Manufacturing Control
,”
Comput. Ind.
,
52
(
3
), pp.
199
219
.
26.
Monostori
,
L.
,
Váncza
,
J.
, and
Kumara
,
S. R.
,
2006
, “
Agent-Based Systems for Manufacturing
,”
CIRP Ann.
,
55
(
2
), pp.
697
720
.
27.
Krothapalli
,
N. K. C.
, and
Deshmukh
,
A. V.
,
1999
, “
Design of Negotiation Protocols for Multi-agent Manufacturing Systems
,”
Int. J. Prod. Res.
,
37
(
7
), pp.
1601
1624
.
28.
Wong
,
T.
,
Leung
,
C.
,
Mak
,
K.-L.
, and
Fung
,
R. Y.
,
2006
, “
Dynamic Shopfloor Scheduling in Multi-agent Manufacturing Systems
,”
Expert Syst. Appl.
,
31
(
3
), pp.
486
494
.
29.
Răileanu
,
S.
,
Anton
,
F.
,
Borangiu
,
T.
,
Anton
,
S.
, and
Nicolae
,
M.
,
2018
, “
A Cloud-Based Manufacturing Control System With Data Integration From Multiple Autonomous Agents
,”
Comput. Ind.
,
102
, pp.
50
61
.
30.
Barenji
,
R. V.
,
Barenji
,
A. V.
, and
Hashemipour
,
M.
,
2014
, “
A Multi-agent RFID-Enabled Distributed Control System for a Flexible Manufacturing Shop
,”
Int. J. Adv. Manuf. Technol.
,
71
, pp.
1773
1791
.
31.
Borangiu
,
T.
,
Gilbert
,
P.
,
Ivanescu
,
N.-A.
, and
Rosu
,
A.
,
2009
, “
An Implementing Framework for Holonic Manufacturing Control With Multiple Robot-Vision Stations
,”
Eng. Appl. Artif. Intell.
,
22
(
4–5
), pp.
505
521
.
32.
Cupek
,
R.
,
Ziebinski
,
A.
,
Huczala
,
L.
, and
Erdogan
,
H.
,
2016
, “
Agent-Based Manufacturing Execution Systems for Short-Series Production Scheduling
,”
Comput. Ind.
,
82
, pp.
245
258
.
33.
Hoffmann
,
M.
,
Thomas
,
P.
,
Schütz
,
D.
,
Vogel-Heuser
,
B.
,
Meisen
,
T.
, and
Jeschke
,
S.
,
2016
, “
Semantic Integration of Multi-agent Systems Using an OPC UA Information Modeling Approach
,”
IEEE International Conference on Industrial Informatics (INDIN)
,
Poitiers, France
,
July 19–21
, IEEE, pp.
744
747
.
34.
Nie
,
Q.
,
Tang
,
D.
,
Liu
,
C.
,
Wang
,
L.
, and
Song
,
J.
,
2023
, “
A Multi-agent and Cloud-Edge Orchestration Framework of Digital Twin for Distributed Production Control
,”
Rob. Comput. Integr. Manuf.
,
82
, p.
102543
.
35.
Ren
,
H.
,
Wang
,
Y.
,
Liu
,
M.
, and
Li
,
H.
,
2022
, “
An Optimal Estimation Framework of Multi-agent Systems With Random Transport Protocol
,”
IEEE Trans. Signal Process.
,
70
, pp.
2548
2559
.
36.
Yang
,
R.
,
Liu
,
L.
, and
Feng
,
G.
,
2022
, “
An Overview of Recent Advances in Distributed Coordination of Multi-agent Systems
,”
Unmanned Syst.
,
10
(
3
), pp.
307
325
.
37.
Liu
,
Y.
,
Li
,
Z.
,
Jiang
,
Z.
, and
He
,
Y.
,
2022
, “
Prospects for Multi-agent Collaboration and Gaming: Challenge, Technology, and Application
,”
Frontiers Inf. Technol. Electronic Eng.
,
23
(
7
), pp.
1002
1009
.
38.
Pach
,
C.
,
Berger
,
T.
,
Bonte
,
T.
, and
Trentesaux
,
D.
,
2014
, “
ORCA-FMS: A Dynamic Architecture for the Optimized and Reactive Control of Flexible Manufacturing Scheduling
,”
Comput. Ind.
,
65
(
4
), pp.
706
720
.
39.
Pipattanasomporn
,
M.
,
Feroze
,
H.
, and
Rahman
,
S.
,
2009
, “
Multi-agent Systems in a Distributed Smart Grid: Design and Implementation
,”
IEEE/PES Power Systems Conference and Exposition
,
Seattle, WA
,
Mar. 15–18
, IEEE, pp.
1
8
.
40.
Tang
,
D.
,
Yan
,
X.
,
Yuan
,
Y.
,
Wang
,
K.
, and
Qiu
,
L.
,
2015
, “
Multi-agent Based Power and Energy Management System for Hybrid Ships
,”
International Conference on Renewable Energy Research and Applications (ICRERA)
,
Palermo, Italy
,
Nov. 22–25
, IEEE, pp.
383
387
.
41.
Regulin
,
D.
,
Glaese
,
A.
,
Feldmann
,
S.
,
Schütz
,
D.
, and
Vogel-Heuser
,
B.
,
2015
, “
Enabling flexible Automation System Hardware: Dynamic Reconfiguration of a Real-Time Capable Field-Bus
,”
IEEE 13th International Conference on Industrial Informatics (INDIN)
,
Cambridge, UK
,
July 22–24
, IEEE, pp.
1198
1205
.
42.
Fang
,
W.
,
Zhang
,
H.
,
Qian
,
W.
,
Guo
,
Y.
,
Li
,
S.
,
Liu
,
Z.
,
Liu
,
C.
, and
Hong
,
D.
,
2023
, “
An Adaptive Job Shop Scheduling Mechanism for Disturbances by Running Reinforcement Learning in Digital Twin Environment
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
5
), p.
051013
.
43.
Tang
,
H.
,
Li
,
D.
,
Wang
,
S.
, and
Dong
,
Z.
,
2018
, “
CASOA: An Architecture for Agent-Based Manufacturing System in the Context of Industry 4.0
,”
IEEE Access
,
6
, pp.
12746
12754
.
44.
Zhang
,
Y.
,
Qian
,
C.
,
Lv
,
J.
, and
Liu
,
Y.
,
2016
, “
Agent and Cyber-Physical System Based Self-Organizing and Self-Adaptive Intelligent Shopfloor
,”
IEEE Trans. Ind. Inf.
,
13
(
2
), pp.
737
747
.
You do not currently have access to this content.