Abstract

A high-fidelity digital representation of (part of) the human body is a key enabler for integrating humans in a digital twin. Among different parts of human body, building the model of the hand can be a challenging task due to the posture deviations among collected scans. In this article, we proposed a posture invariant statistical shape model (SSM) of the human hand based on 59 3D scans of human hands. First, the 3D scans were spatially aligned using a Möbius sphere-based algorithm. An articulated skeleton, which contains 20 bone segments and 16 joints, was embedded for each 3D scan. Then, all scans were aligned to the same posture using the skeleton and the linear blend skinning (LBS) algorithm. Three methods, i.e., principal component analysis (PCA), kernel-PCA (KPCA) with different kernel functions, and independent component analysis (ICA), were evaluated in the construction of the SSMs regarding the compactness, the generalization ability, and the specificity. The PCA-based SSM was selected, where 20 principal components were used as parameters for the model. Results of the leave-one-out validation indicate that the proposed model was able to fit a given 3D scan of the human hand at an accuracy of 1.21 ± 0.14 mm. Experiment results also indicated that the proposed SSM outperforms the SSM that was built on the scans without posture correction. It is concluded that the proposed posture correction approach can effectively improve the accuracy of the hand SSM and therefore enables its wide usage in human-integrated digital twin applications.

References

1.
Grieves
,
M.
,
2014
, “
Digital Twin: Manufacturing Excellence Through Virtual Factory Replication
,”
White Pap.
,
1
, pp.
1
7
.
2.
Jones
,
D.
,
Snider
,
C.
,
Nassehi
,
A.
,
Yon
,
J.
, and
Hicks
,
B.
,
2020
, “
Characterising the Digital Twin: A Systematic Literature Review
,”
CIRP J. Manuf. Sci. Technol.
,
29
(
Part A
), pp.
36
52
.
3.
Emmanouilidis
,
C.
,
Pistofidis
,
P.
,
Bertoncelj
,
L.
,
Katsouros
,
V.
,
Fournaris
,
A.
,
Koulamas
,
C.
, and
Ruiz-Carcel
,
C.
,
2019
, “
Enabling the Human in the Loop: Linked Data and Knowledge in Industrial Cyber-Physical Systems
,”
Annu. Rev. Control
,
47
, pp.
249
265
.
4.
Romero
,
D.
,
Stahre
,
J.
, and
Taisch
,
M.
,
2020
, “
The Operator 4.0: Towards Socially Sustainable Factories of the Future
,”
Comput. Ind. Eng.
,
139
.
5.
Barricelli
,
B. R.
,
Casiraghi
,
E.
,
Gliozzo
,
J.
,
Petrini
,
A.
, and
Valtolina
,
S.
,
2020
, “
Human Digital Twin for Fitness Management
,”
IEEE Access
,
8
, pp.
26637
26664
.
6.
Chu
,
C. H.
,
Wang
,
I. J.
,
Wang
,
J. B.
, and
Luh
,
Y. P.
,
2017
, “
3D Parametric Human Face Modeling for Personalized Product Design: Eyeglasses Frame Design Case
,”
Adv. Eng. Informatics
,
32
, pp.
202
223
.
7.
Wang
,
R.
,
Chen
,
C.-F.
,
Peng
,
H.
,
Liu
,
X.
,
Liu
,
O.
, and
Li
,
X.
,
2019
, “
Digital Twin: Acquiring High-Fidelity 3D Avatar From a Single Image
.”
8.
Hasson
,
Y.
,
Varol
,
G.
,
Tzionas
,
D.
,
Kalevatykh
,
I.
,
Black
,
M. J.
,
Laptev
,
I.
, and
Schmid
,
C.
,
2019
, “
Learning Joint Reconstruction of Hands and Manipulated Objects
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Long Beach, CA
,
June 16–20
, pp.
11807
11816
.
9.
Yu
,
A.
,
Yick
,
K. L.
,
Ng
,
S. P.
, and
Yip
,
J.
,
2019
, “
Case Study on the Effects of Fit and Material of Sports Gloves on Hand Performance
,”
Appl. Ergon.
,
75
, pp.
17
26
.
10.
Baek
,
S.-Y.
, and
Lee
,
K.
,
2016
, “
Statistical Foot-Shape Analysis for Mass-Customisation of Footwear
,”
Int. J. Comput. Aided Eng. Technol.
,
8
(
1–2
), pp.
80
98
.
11.
Harih
,
G.
, and
Dolšak
,
B.
,
2013
, “
Tool-Handle Design Based on a Digital Human Hand Model
,”
Int. J. Ind. Ergon.
,
43
(
4
), pp.
288
295
.
12.
Van Houtte
,
J.
,
Stanković
,
K.
,
Booth
,
B.G.
,
Danckaers
,
F.
,
Bertrand
,
V.
,
Verstreken
,
F.
,
Sijbers
,
J.
, and
Huysmans
,
T.
,
2018
, “
An Articulating Statistical Shape Model of the Human Hand
,”
International Conference on Applied Human Factors and Ergonomics
,
Orlando, FL
,
July 22–26
, pp.
433
445
.
13.
Schwarz
,
R. J.
, and
Taylor
,
C. L.
,
1955
, “
The Anatomy and Mechanics of the Human Hand
,”
Artif. Limbs
,
2
(
2
), pp.
22
35
.
14.
Danckaers
,
F.
,
Huysmans
,
T.
,
Hallemans
,
A.
,
De Bruyne
,
G.
,
Truijen
,
S.
, and
Sijbers
,
J.
,
2019
, “
Posture Normalisation of 3D Body Scans
,”
Ergonomics
,
62
(
6
), pp.
834
848
.
15.
Martin
,
J. A.
,
Ramsay
,
J.
,
Hughes
,
C.
,
Peters
,
D. M.
, and
Edwards
,
M. G.
,
2015
, “
Age and Grip Strength Predict Hand Dexterity in Adults
,”
PLoS One
,
10
(
2
).
16.
Endo
,
H.
, and
Kawahara
,
K.
,
2011
, “
Gender Differences in Hand Stability of Normal Young People Assessed at Low Force Levels
,”
Ergonomics
,
54
(
3
), pp.
273
281
.
17.
Schölkopf
,
B.
,
Smola
,
A.
, and
Müller
,
K.-R.
,
1997
, “
Kernel Principal Component Analysis
,”
International Conference on Artificial Neural Networks
,
Lausanne, Switzerland
,
Oct. 8–10
, pp.
583
588
.
18.
Üzümcü
,
M.
,
Frangi
,
A. F.
,
Reiber
,
J. H. C.
, and
Lelieveldt
,
B. P. F.
,
2003
, “
Independent Component Analysis in Statistical Shape Models
,”
Medical Imaging 2003: Image Processing
,
5032
, pp.
375
383
.
19.
Hyvärinen
,
A.
, and
Oja
,
E.
,
2000
, “
Independent Component Analysis: Algorithms and Applications
,”
Neural Networks
,
13
(
4–5
), pp.
411
430
.
20.
Baek
,
S.-Y.
, and
Lee
,
K.
,
2012
, “
Parametric Human Body Shape Modeling Framework for Human-Centered Product Design
,”
Comput. Des.
,
44
(
1
), pp.
56
67
.
21.
Robinette
,
K. M.
,
Daanen
,
H.
, and
Paquet
,
E.
,
1999
, “
The CAESAR Project: A 3-D Surface Anthropometry Survey
,”
Second International Conference on 3-D Digital Imaging and Modeling (Cat. No. PR00062)
,
Ottawa, Canada
,
Oct. 4–8
, pp.
380
386
.
22.
Allen
,
B.
,
Curless
,
B.
, and
Popović
,
Z.
,
2003
, “
The Space of Human Body Shapes: Reconstruction and Parameterization From Range Scans
,”
ACM Trans. Graph.
,
22
(
3
), pp.
587
594
.
23.
Seo
,
H.
, and
Magnenat-Thalmann
,
N.
,
2003
, “
An Automatic Modeling of Human Bodies From Sizing Parameters
,”
Proceedings of the 2003 Symposium on Interactive 3D Graphics
,
Monterey, CA
,
Apr. 28–30
, pp.
19
26
.
24.
Sorkine
,
O.
, and
Alexa
,
M.
,
2007
, “
As-Rigid-as-Possible Surface Modeling
,”
Eurographics Symp. Geom. Process.
,
4
, pp.
109
116
.
25.
Hasler
,
N.
,
Stoll
,
C.
,
Sunkel
,
M.
,
Rosenhahn
,
B.
, and
Seidel
,
H.
,
2009
, “
A Statistical Model of Human Pose and Body Shape
,”
Computer Graphics Forum
,
28
(
2
), pp.
337
346
.
26.
Loper
,
M.
,
Mahmood
,
N.
,
Romero
,
J.
,
Pons-Moll
,
G.
, and
Black
,
M. J.
,
2015
, “
SMPL: A Skinned Multi-Person Linear Model
,”
ACM Trans. Graph.
,
34
(
6
), p.
248
.
27.
Wuhrer
,
S.
,
Shu
,
C.
, and
Xi
,
P.
,
2012
, “
Posture-Invariant Statistical Shape Analysis Using Laplace Operator
,”
Comput. Graph.
,
36
(
5
), pp.
410
416
.
28.
Danckaers
,
F.
,
Huysmans
,
T.
,
Hallemans
,
A.
,
De Bruyne
,
G.
,
Truijen
,
S.
, and
Sijbers
,
J.
,
2017
, “
Full Body Statistical Shape Modeling With Posture Normalization
,”
International Conference on Applied Human Factors and Ergonomics
,
Los Angeles, CA
,
July 17–21
, pp.
437
448
.
29.
Oikonomidis
,
I.
,
Kyriazis
,
N.
, and
Argyros
,
A. A.
,
2011
, “
Full DOF Tracking of a Hand Interacting With an Object by Modeling Occlusions and Physical Constraints
,”
Proceedings of the IEEE International Conference on Computer Vision
,
Barcelona, Spain
,
Nov. 6–13
, pp.
2088
2095
.
30.
Sridhar
,
S.
,
Mueller
,
F.
,
Oulasvirta
,
A.
, and
Theobalt
,
C.
,
2015
, “
Fast and Robust Hand Tracking Using Detection-Guided Optimization
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Boston, MA
,
June 7–12
, pp.
3213
3221
.
31.
Sridhar
,
S.
,
Oulasvirta
,
A.
, and
Theobalt
,
C.
,
2013
, “
Interactive Markerless Articulated Hand Motion Tracking Using RGB and Depth Data
,”
Proceedings of the IEEE international conference on computer vision
,
Sydney, Australia
,
Dec. 1–8
, pp.
2456
2463
.
32.
Tkach
,
A.
, and
Tagliasacchi
,
A.
,
2016
, “
Sphere-Meshes for Real-Time Hand Modeling and Tracking
,”
ACM Transactions on Graphics (ToG)
,
35
(
6
), pp.
1
11
.
33.
Romero
,
J.
,
Tzionas
,
D.
, and
Black
,
M. J.
,
2017
, “
Embodied Hands: Modeling and Capturing Hands and Bodies Together
,”
ACM Trans. Graph
,
36
(
4
), p.
17
.
34.
van Nierop
,
O. A.
,
van der Helm
,
A.
,
Overbeeke
,
K. J.
, and
Djajadiningrat
,
T. J. P.
,
2008
, “
A Natural Human Hand Model
,”
Vis. Comput.
,
24
(
1
), pp.
31
44
.
35.
Li
,
K.
, and
Qian
,
X.
,
2015
, “
Direct Diffeomorphic Reparameterization for Correspondence Optimization in Statistical Shape Modeling
,”
Comput. Des.
,
64
, pp.
33
54
.
36.
Amberg
,
B.
,
Romdhani
,
S.
, and
Vetter
,
T.
,
2007
, “
Optimal Step Nonrigid ICP Algorithms for Surface Registration
,”
IEEE Conference on Computer Vision and Pattern Recognition
,
Minneapolis, MN
,
June 18–23
, pp.
1
8
.
37.
Chen
,
Q.
, and
Koltun
,
V.
,
2015
, “
Robust Nonrigid Registration by Convex Optimization
,”
Proceedings of the IEEE International Conference on Computer Vision
,
Santiago, Chile
,
Dec. 7–13
, pp.
2039
2047
.
38.
Ma
,
J.
,
Zhao
,
J.
, and
Yuille
,
A. L.
,
2015
, “
Non-Rigid Point Set Registration by Preserving Global and Local Structures
,”
IEEE Trans. Image Process.
,
25
(
1
), pp.
53
64
.
39.
Lee
,
S. C.
, and
Kazhdan
,
M.
,
2019
, “
Dense Point-to--Point Correspondences Between Genus-Zero Shapes
,”
Computer Graphics Forum
,
38
(
5
), pp.
27
37
.
40.
Neophytou
,
A.
, and
Hilton
,
A.
,
2013
, “
Shape and Pose Space Deformation for Subject Specific Animation
,”
International Conference on 3D Vision-3DV 2013
,
Washington, DC
,
June 29–July 1
, pp.
334
341
.
41.
Park
,
B.-K.
,
Lumeng
,
J. C.
,
Lumeng
,
C. N.
,
Ebert
,
S. M.
, and
Reed
,
M. P.
,
2015
, “
Child Body Shape Measurement Using Depth Cameras and a Statistical Body Shape Model
,”
Ergonomics
,
58
(
2
), pp.
301
309
.
42.
Jain
,
A.
,
Thormählen
,
T.
,
Seidel
,
H.-P.
, and
Theobalt
,
C.
,
2010
, “
MovieReshape: Tracking and Reshaping of Humans in Videos
,”
ACM Trans. Graph.
,
29
(
6
), p.
1
.
43.
Pishchulin
,
L.
,
Wuhrer
,
S.
,
Helten
,
T.
,
Theobalt
,
C.
, and
Schiele
,
B.
,
2017
, “
Building Statistical Shape Spaces for 3D Human Modeling
,”
Pattern Recognit.
,
67
, pp.
276
286
.
44.
Kirschner
,
M.
,
Becker
,
M.
, and
Wesarg
,
S.
,
2011
, “
3D Active Shape Model Segmentation with Nonlinear Shape Priors
,”
International Conference on Medical Image Computing and Computer-Assisted Intervention
,
Toronto, Canada
,
Sept. 18–22
, pp.
492
499
.
45.
Faghih Roohi
,
S.
, and
Aghaeizadeh Zoroofi
,
R.
,
May 2013
, “
4D Statistical Shape Modeling of the Left Ventricle in Cardiac MR Images
,”
Int. J. Comput. Assist. Radiol. Surg.
,
8
(
3
), pp.
335
351
.
46.
Lübbers
,
H.-T.
,
Medinger
,
L.
,
Kruse
,
A.
,
Grätz
,
K. W.
, and
Matthews
,
F.
,
May 2010
, “
Precision and Accuracy of the 3dMD Photogrammetric System in Craniomaxillofacial Application
,”
J. Craniofac. Surg.
,
21
(
3
), pp.
763
767
.
47.
Yang
,
Y.
,
Elkhuizen
,
W. S.
,
Hou
,
T.
,
Essers
,
T. T. W.
, and
Song
,
Y.
,
2019
, “
Optimal Camera Configuration for 3D Scanning of Human Hand
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
, Vol.
59179
, p.
V001T02A047
.
48.
Ben Azouz
,
Z.
,
Rioux
,
M.
,
Shu
,
C.
, and
Lepage
,
R.
,
2006
, “
Characterizing Human Shape Variation Using 3D Anthropometric Data
,”
Vis. Comput.
,
22
(
5
), pp.
302
314
.
49.
Dyke
,
R.
,
Stride
,
C.
,
Lai
,
Y.
,
Rosin
,
P.
,
Aubry
,
M.
,
Boyarski
,
A.
,
Bronstein
,
A. M.
,
Bronstein
,
M. M.
,
Cremers
,
D.
, and
Fisher
,
M.
,
2019
, “
SHREC-19: Shape Correspondence With Isometric and Non-Isometric Deformations
,”
Eurographics Workshop on 3D Object Retrieval
,
Genova, Italy
,
May 5–6
.
50.
Kazhdan
,
M.
,
Solomon
,
J.
, and
Ben-Chen
,
M.
,
2012
, “
Can Mean-Curvature Flow Be Modified to be Non-Singular?
,”
Computer Graphics Forum
,
31
(
5
), pp.
1745
1754
.
51.
Sun
,
J.
,
Ovsjanikov
,
M.
, and
Guibas
,
L.
,
2009
, “
A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion
,”
Computer Graphics Forum
,
28
(
5
), pp.
1383
1392
.
52.
Khamis
,
S.
,
Taylor
,
J.
,
Shotton
,
J.
,
Keskin
,
C.
,
Izadi
,
S.
, and
Fitzgibbon
,
A.
,
2015
, “
Learning an Efficient Model of Hand Shape Variation From Depth Images
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Boston, MA
,
June 7–12
, pp.
2540
2548
.
53.
Tan
,
D. J.
,
Cashman
,
T.
,
Taylor
,
J.
,
Fitzgibbon
,
A.
,
Tarlow
,
D.
,
Khamis
,
S.
,
Izadi
,
S.
, and
Shotton
,
J.
,
2016
, “
Fits Like a Glove: Rapid and Reliable Hand Shape Personalization
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Las Vegas, NV
,
June 26–July 1
, pp.
5610
5619
.
54.
Magnenat-Thalmann
,
N.
,
Laperrire
,
R.
, and
Thalmann
,
D.
,
1988
, “
Joint-Dependent Local Deformations for Hand Animation and Object Grasping
,”
In Proceedings on Graphics Interface’88
,
Alberta, Canada
,
June 6–10
, pp.
26
33
.
55.
Jacobson
,
A.
,
Baran
,
I.
,
Popovic
,
J.
, and
Sorkine
,
O.
,
2011
, “
Bounded Biharmonic Weights for Real-Time Deformation
,”
ACM Trans. Graph.
,
30
(
4
), p.
78
.
56.
Gower
,
J. C.
,
1975
, “
Generalized Procrustes Analysis
,”
Psychometrika
,
40
(
1
), pp.
33
51
.
57.
Schölkopf
,
B.
,
Mika
,
S.
,
Smola
,
A.
,
Rätsch
,
G.
, and
Müller
,
K.-R.
,
1998
, “
Kernel PCA Pattern Reconstruction via Approximate pre-Images
,”
International Conference on Artificial Neural Networks
,
Skövde, Sweden
,
Sept. 2–4
, pp.
147
152
.
58.
Wang
,
Q.
,
2012
, “
Kernel Principal Component Analysis and Its Applications in Face Recognition and Active Shape Models
,”
CoRR
,
abs/1207.3538
.
59.
Styner
,
M. A.
,
Rajamani
,
K. T.
,
Nolte
,
L.
,
Zsemlye
,
G.
,
Sz´ekely
,
G.
,
Taylor
,
C. J.
, and
Davies
,
R. H.
,
2003
, “
Evaluation of 3D Correspondence Methods for Model Building
,”
Inf. Process. Med. Imaging
,
2732
, pp.
63
75
.
You do not currently have access to this content.