Abstract

Digital twin workshop (DTW) is an important embodiment of intelligent manufacturing in the workshop level, which enables the smart production control and management of the workshop. However, there still exist problems including data modeling and verification of digital model in the process of DTW construction. To solve these problem, multidimensional data modeling and model validation methods of DTW are proposed in this article. First, five-order tensor models for representing manufacturing elements are established to unify the data from physical workshop (PW) and virtual workshop (VW). Then, the mathematical method for verifying DTW twin model is proposed from the recessive and explicit perspective. Finally, a case study of an aerospace machining workshop is carried out to verify the operability and effectiveness of the proposed method. The case analysis shows that the proposed methods can effectively evaluate whether the twin model accurately provides the description of the actual behavior process of physical workshop, and the proposed methods have good performance.

References

1.
Cearley
,
D. W.
,
Burke
,
B.
,
Searle
,
S.
, and
Walker
,
M. J.
,
2020
, “
Top 10 Strategic Technology Trends for 2018: A Gartner Trend Insight Report.
https://www.gartner.com
2.
Tao
,
F.
,
Zhang
,
M.
,
Cheng
,
J.
, and
Qi
,
Q. L.
,
2017
, “
Digital Twin Workshop: A New Paradigm for Future Workshop
,”
Comput. Integr. Manuf. Syst.
,
23
(
1
), pp.
1
9
. 10.13196/j.cims.2017.01.001
3.
Zhang
,
Q.
,
Zhang
,
X.
,
Xu
,
W.
,
Liu
,
A.
,
Zhou
,
Z.
, and
Duc
,
T. P.
,
2017
, “
Modeling of Digital Twin Workshop Based on Perception Data
,”
International Conference on Intelligent Robotics and Applications
, Aug. 16–18,
Springer Cham
,
Switzerland
, pp.
3
14
.
4.
Uhlemann
,
H. J.
,
Lehmann
,
C.
, and
Steinhilper
,
R.
,
2017
, “
The Digital Twin: Realizing the Cyber-Physical Production System for Industry 4.0
,”
24th CIRP Conference on Life Cycle Engineering
,
Kamakura City, Japan, Mar. 8–10, Procedia CIRP.
,
61
, pp.
335
340
.
5.
Tao
,
F.
,
Cheng
,
J.
,
Qi
,
Q. L.
,
Zhang
,
M.
,
Zhang
,
H.
, and
Sui
,
F. Y.
,
2018
, “
Digital Twin-Driven Product Design, Manufacturing and Service With Big Data
,”
Int. J. Adv. Manuf. Technol.
,
94
(
9–12
), pp.
3563
3576
. 10.1007/s00170-017-0233-1
6.
Tao
,
F.
, and
Qi
,
Q. L.
,
2019
, “
Make More Digital Twins
,”
Nature
,
573
(
7775
), pp.
490
491
. 10.1038/d41586-019-02849-1
7.
Qi
,
Q. L.
, and
Tao
,
F.
,
2018
, “
Digital Twin and Big Data Towards Smart Manufacturing and Industry 4.0: 360 Degree Comparison
,”
IEEE Access
,
6
, pp.
3585
3593
. 10.1109/ACCESS.2018.2793265
8.
Ding
,
K.
,
Chan
,
F. T.
,
Zhang
,
X. D.
,
Zhou
,
G. H.
, and
Zhang
,
F. Q.
,
2019
, “
Defining a Digital Twin-Based Cyber-Physical Production System for Autonomous Manufacturing in Smart Shop Floors
,”
Int. J. Prod. Res.
,
57
(
20
), pp.
6315
6334
. 10.1080/00207543.2019.1566661
9.
Bao
,
J.
,
Guo
,
D.
,
Li
,
J.
, and
Zhang
,
J.
,
2019
, “
The Modelling and Operations for the Digital Twin in the Context of Manufacturing
,”
Enterp. Inf. Syst.
,
13
(
4
), pp.
534
556
. 10.1080/17517575.2018.1526324
10.
Liu
,
Q.
,
Zhang
,
H.
,
Leng
,
J.
, and
Chen
,
X.
,
2019
, “
Digital Twin-Driven Rapid Individualised Designing of Automated Flow-Shop Manufacturing System
,”
Int. J. Prod. Res.
,
57
(
12
), pp.
3903
3919
. 10.1080/00207543.2018.1471243
11.
Miao
,
Q.
,
Zou
,
W.
,
Liu
,
L. L.
,
Wan
,
X.
, and
Wu
,
P. F.
,
2020
, “
Intelligent Workshop Digital Twin Virtual Reality Fusion and Applications
,”
Adv. Manuf. Autom.
,
634
, pp.
585
592
. 10.1007/978-981-15-2341-0_73
12.
Cheng
,
J. F.
,
Zhang
,
H.
,
Tao
,
F.
, and
Juang
,
C. F.
,
2020
, “
DT-II: Digital Twin Enhanced Industrial Internet Reference Framework Towards Smart Manufacturing
,”
Robot Comput. Integr. Manuf.
,
62
, pp.
1
14
. 10.1016/j.rcim.2019.101881
13.
Khaleghi
,
B.
,
Khamis
,
A.
,
Karray
,
F. O.
, and
Razavi
,
S. N.
,
2013
, “
Multisensor Data Fusion: A Review of the State-of-the-Art
,”
Inform. Fusion
,
14
(
1
), pp.
28
44
. 10.1016/j.inffus.2011.08.001
14.
Wang
,
J.
,
Gao
,
Y.
,
Liu
,
W.
,
Sangaiah
,
A. K.
, and
Kim
,
H. J.
,
2019
, “
An Intelligent Data Gathering Schema With Data Fusion Supported for Mobile Sink in Wireless Sensor Networks
,”
Int. J. Distrib. Sens. Netw.
,
15
(
3
), pp.
1
9
. 10.1177/1550147719839581
15.
Chebotko
,
A.
,
Kashlev
,
A.
, and
Lu
,
S.
,
2015
, “
A Big Data Modeling Methodology for Apache Cassandra
,”
IEEE International Congress on Big Data, New York City
,
New York
,
June 27–July 2
, pp.
238
245
.
16.
Ge
,
Z. Q.
,
2017
, “
Review on Data-Driven Modeling and Monitoring for Plant-Wide Industrial Processes
,”
Chemom. Intell. Lab. Syst.
,
171
, pp.
16
25
. 10.1016/j.chemolab.2017.09.021
17.
Chinesta
,
F.
,
Cueto
,
E.
,
Abisset-Chavanne
,
E.
,
Duval
,
J. L.
, and
Khaldi
,
F. E.
,
2020
, “
Virtual, Digital and Hybrid Twins: A New Paradigm in Data-Based Engineering and Engineered Data
,”
Arch. Comput. Methods Eng.
,
27
(
1
), pp.
105
134
. 10.1007/s11831-018-9301-4
18.
Wang
,
C.
,
Zhou
,
G.
, and
Zhu
,
Z.
,
2020
, “
Service Perspective Based Production Control System for Smart Job Shop Under Industry 4.0
,”
Robot Comput. Integr. Manuf.
,
65
, p.
101954
. 10.1016/j.rcim.2020.101954
19.
Sargent
,
R. G.
,
2013
, “
An Introduction to Verification and Validation of Simulation Models
,”
IEEE Simulation Conference
,
Washington DC
,
Dec. 8–11
, pp.
321
327
.
20.
Tantithamthavorn
,
C.
,
Mcintosh
,
S.
,
Hassan
,
A. E.
, and
Matsumoto
,
K.
,
2017
, “
An Empirical Comparison of Model Validation Techniques for Defect Prediction Models
,”
IEEE Trans. Softw. Eng.
,
43
(
1
), pp.
1
18
. 10.1109/TSE.2016.2584050
21.
Kang
,
S.
,
2020
, “
Model Validation Failure in Class Imbalance Problems
,”
Expert Syst. Appl.
,
146
, p.
113190
. 10.1016/j.eswa.2020.113190
22.
Aderiani
,
A.
,
Warmefjord
,
K.
,
Soderberg
,
R.
, and
Lindkvist
,
L.
,
2019
, “
Individualizing Locator Adjustments of Assembly Fixtures Using a Digital Twin
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
4
), p.
041019
. 10.1115/1.4043529
23.
Borg
,
A.
, and
Njå
,
O.
,
2013
, “
Concept of Validation in Performance-Based Fire Safety Engineering
,”
Saf. Sci.
,
52
, pp.
57
64
. 10.1016/j.ssci.2012.03.011
24.
Michael
,
G.
,
2015
, “
Digital Twin: Manufacturing Excellence Through Virtual Factory Replication
,” http://www.apriso.com, Accessed July 25, 2020.
25.
Liu
,
X. Q.
,
Shahriar
,
M. R.
,
Al Sunny
,
S. M. N.
,
Leu
,
M. C.
, and
Hu
,
L. W.
,
2017
, “
Cyber-Physical Manufacturing Cloud: Architecture, Virtualization, Communication, and Testbed
,”
J. Manuf. Syst.
,
43
, pp.
352
364
. 10.1016/j.jmsy.2017.04.004
26.
Kolda
,
T. G.
, and
Bader
,
B. W.
,
2009
, “
Tensor Decompositions and Applications
,”
SIAM Rev.
,
51
(
3
), pp.
455
500
. 10.1137/07070111X
27.
Kuang
,
L.
,
Hao
,
F.
,
Yang
,
L. T.
,
Lin
,
M.
,
Luo
,
C. Q.
, and
Min
,
G. Y.
,
2014
, “
A Tensor-Based Approach for Big Data Representation and Dimensionality Reduction
,”
IEEE Trans. Emerg. Topics Comput.
,
2
(
3
), pp.
280
291
. 10.1109/TETC.2014.2330516
28.
Liu
,
H. Z.
,
2018
, “
A Tensor Based Big Data Efficient Computation and Multimodal Analysis Approach
,”
Ph.D. thesis
, Huazhong University of Science and Technology, Wuhan, pp.
20
27
, http://www.hust.edu.cn/, Accessed August 21, 2020.
29.
Khorram
,
S.
,
2020
, “
A Novel Approach for Ports’ Container Terminals’ Risk Management Based on Formal Safety Assessment: FAHP-Entropy Measure-VIKOR Model
,”
Nat. Hazards
,
103
(
2
), pp.
1709
1709
10.1007/s11069-020-04160-z
30.
Cichocki
,
A.
,
Lee
,
N.
,
Oseledets
,
I. V.
,
Phan
,
A. H.
,
Zhao
,
Q.
, and
Mandic
,
D.
,
2016
, “
Low-Rank Tensor Networks for Dimensionality Reduction and Large-Scale Optimization Problems: Part 1 Perspectives and Challenges
,”
Found. Trends Mach. Learn.
,
9
(
4
), pp.
249
312
. 10.1561/2200000059
You do not currently have access to this content.