Abstract

In the manufacturing process of remanufactured products, balancing the life between their components is one of the important measures to achieve full utilization of waste components and sustainable economic development. In order to prolong the life cycle of remanufactured products and increase the life of parts and components, a life balance-considered matching optimization method is proposed for remanufactured parts in the process of components matching. By comprehensively considering the life matching degree of remanufactured parts and the matching success rate, a life balance-considered matching optimization model is established for remanufactured parts. We adopted an improved ant colony algorithm to solve the proposed matching model to get multiple sets of optimal component combinations with minimal life deviations between component combinations. The correctness of the model and the effectiveness of the algorithm are verified by taking the gear reducer component matching process as an example.

References

1.
Lei
,
W.
,
Xia
,
X. H.
,
Cao
,
J. H.
,
Liu
,
X.
, and
Liu
,
J. W.
,
2018
, “
An Improved Ant Colony-Genetic Algorithm for Information Transmission Path Optimization in Remanufacturing Service System
,”
Chin. J. Mech. Eng.
,
31
(
1
), p.
107
. 10.1186/s10033-018-0311-9
2.
Lei
,
W.
,
Xia
,
X. H.
,
Cao
,
J. H.
, and
Liu
,
X.
,
2019
, “
Modeling and Predicting Remanufacturing Time of Equipment Using Deep Belief Networks
,”
Cluster Comput.-J. Networks Software Tools Appl.
,
22
(
2
), pp.
2677
2688
.
3.
Kannan
,
S.
,
Asha
,
A.
, and
Jayabalan
,
V.
,
2005
, “
A New Method in Selective Assembly to Minimize Clearance Variation for a Radial Assembly Using Genetic Algorithm
,”
Qual. Eng.
,
17
(
4
), pp.
595
607
. 10.1080/08982110500225398
4.
Sun
,
B.
,
Zhang
,
S. Y.
, and
Cao
,
Y.
,
2012
, “
Virtual Assembly Simulation Method for Complicated Mechanical Product
,”
Adv. Mater. Res.
,
532–533
, pp.
1303
1307
. 10.4028/www.scientific.net/AMR.532-533.1303
5.
Konoshita
,
R.
,
Sakurai
,
K.
, and
Yamane
,
S.
,
2014
, “
Model Generation by the Exhaustive Search for Embedded Assembly Programs and Application to Model Checking
,”
Consum. Electron. IEEE
,
2014
, pp.
699
702
.
6.
Babu
,
J. R.
, and
Asha
,
A.
,
2014
, “
Tolerance Modelling in Selective Assembly for Minimizing Linear Assembly Tolerance Variation and Assembly Cost by Using Taguchi and AIS Algorithm
,”
Int. J. Adv. Manuf. Technol.
,
75
(
5–8
), pp.
869
881
. 10.1007/s00170-014-6097-8
7.
Raj
,
M. V.
,
Sankar
,
S. S.
, and
Ponnambalam
,
S. G.
,
2012
, “
Particle Swarm Optimization Algorithm to Maximize Assembly Efficiency
,”
Int. J. Adv. Manuf. Technol.
,
59
(
5–8
), pp.
719
736
. 10.1007/s00170-011-3512-2
8.
Raj
,
M. V.
,
Sankar
,
S. S.
, and
Ponnambalam
,
S. G.
,
2011
, “
Maximising Manufacturing System Efficiency for Multi-Characteristic Linear Assembly by Using Particle Swarm Optimisation in Batch Selective Assembly
,”
Int. J. Prod. Res.
,
49
(
21
), pp.
6491
6516
. 10.1080/00207543.2010.537388
9.
Kannan
,
S.
,
Jayabalan
,
V.
, and
Jeevanantham
,
K.
,
2003
, “
Genetic Algorithm for Minimizing Assembly Variation in Selective Assembly
,”
Int. J. Prod. Res.
,
41
(
14
), pp.
3301
3313
. 10.1080/0020754031000109143
10.
Singh
,
P. K.
,
Jain
,
P. K.
, and
Jain
,
S. C.
,
2004
, “
A Genetic Algorithm-Based Solution to Optimal Tolerance Synthesis of Mechanical Assemblies With Alternative Manufacturing Processes: Focus on Complex Tolerancing Problems
,”
Int. J. Prod. Res.
,
42
(
24
), pp.
5185
5215
. 10.1080/00207540410001733931
11.
Ponnambalam
,
S. G.
,
Sankar
,
S.
,
Sriram
,
S.
, and
Gurumarimuthu
,
M.
,
2006
, “
Parallel Populations Genetic Algorithm for Minimizing Assembly Variation in Selective Assembly
,”
IEEE International Conference on Automation Science & Engineering IEEE.
,
Shanghai, China
,
Oct. 7–10
, pp.
496
500
.
12.
Raj
,
M. V.
,
Sankar
,
S. S.
, and
Ponnambalam
,
S. G.
,
2011
, “
Minimizing Clearance Variations and Surplus Parts in Multiple Characteristic Radial Assembly Through Batch Selective Assembly
,”
Int. J. Adv. Manuf. Technol.
,
57
(
9–12
), pp.
1199
1222
. 10.1007/s00170-011-3367-6
13.
Kannan
,
S.
, and
Jayabalan
,
V.
,
2001
, “
A New Grouping Method to Minimize Surplus Parts in Selective Assembly for Complex Assemblies
,”
Int. J. Prod. Res.
,
39
(
9
), pp.
1851
1863
. 10.1080/00207540110035219
14.
Sidwell
,
V.
, and
Darmofal
,
D.
,
2004
, “
A Selective Assembly Method to Reduce the Impact of Blade Flow Variability on Turbine Life
,”
ASME Turbo Expo 2004: Power for Land, Sea, and Air
,
Vienna, Austria
,
June 14–17
, American Society of Mechanical Engineers Digital Collection, pp.
267
276
.
15.
Haghighi
,
P.
,
Mohan
,
P.
,
Kalish
,
N.
,
Vemulapalli
,
P.
,
Shah
,
J. J.
, and
Davidson
,
J. K.
,
2015
, “
Toward Automatic Tolerancing of Mechanical Assemblies: First-Order GD&T Schema Development and Tolerance Allocation
,”
ASME J. Comput. Inform. Sci. Eng.
,
15
(
4
), p.
041003
. 10.1115/1.4030939
16.
Asha
,
A.
,
Kannan
,
S.
, and
Jayabalan
,
V.
,
2008
, “
Optimization of Clearance Variation in Selective Assembly for Components With Multiple Characteristics
,”
Int. J. Adv. Manuf. Technol.
,
38
(
9–10
), pp.
1026
1044
. 10.1007/s00170-007-1136-3
17.
Raj
,
M. V.
,
Sankar
,
S. S.
, and
Ponnambalam
,
S. G.
,
2011
, “
Optimization of Assembly Tolerance Variation and Manufacturing System Efficiency by Using Genetic Algorithm in Batch Selective Assembly
,”
Int. J. Adv. Manuf. Technol.
,
55
(
9–12
), pp.
1193
1208
. 10.1007/s00170-010-3124-2
18.
Hussain
,
T.
,
Yang
,
Z.
,
Popov
,
A. A.
, and
McWilliam
,
S.
,
2011
, “
Straight-Build Assembly Optimization: A Method to Minimize Stage-by-Stage Eccentricity Error in the Assembly of Axisymmetric Rigid Components (Two-Dimensional Case Study)
,”
ASME J. Manuf. Sci. Eng.
,
133
(
3
), p.
031014
. 10.1115/1.4004202
19.
Kwon
,
H. M.
,
2015
, “
An Economic Selective Assembly Procedure for Two Mating Components With Equal Variance
,”
Naval Res. Logist.
,
46
(
7
), pp.
809
821
.
20.
Caputo
,
A. C.
, and
Di Salvo
,
G.
,
2016
, “
An Economic Decision Model for Selective Assembly
,”
Int. J. Prod. Econ.
,
207
, pp.
56
69
. 10.1016/j.ijpe.2018.11.004
21.
Geng
,
J.
,
Zhang
,
S.
, and
Yang
,
B.
,
2015
, “
A Publishing Method of Lightweight Three-Dimensional Assembly Instruction for Complex Products
,”
ASME J. Comput. Inform. Sci. Eng.
,
15
(
3
), p.
031004
. 10.1115/1.4029753
22.
Forslund
,
A.
,
Lorin
,
S.
,
Lindkvist
,
L.
,
Wärmefjord
,
K.
, and
Söderberg
,
R.
,
2017
, “
Minimizing Weld Variation Effects Using Permutation Genetic Algorithms and Virtual Locator Trimming
,”
ASME J. Comput. Inform. Sci. Eng.
,
18
(
4
), p.
041010
. 10.1115/1.4040952
23.
Zhu
,
L.
,
Feng
,
R.
,
Li
,
X.
,
Xi
,
J.
, and
Wei
,
X.
,
2019
, “
A Tree-Shaped Support Structure for Additive Manufacturing Generated by Using a Hybrid of Particle Swarm Optimization and Greedy Algorithm
,”
ASME J. Comput. Inform. Sci. Eng.
,
19
(
4
), p.
041010
. 10.1115/1.4043530
24.
Fujita
,
K.
,
Yamasaki
,
S.
, and
Kawamoto
,
M.
,
2014
, “
Hierarchical Optimization-Based Approach for Two-Dimensional Rectangular Layout Design Problems
,”
ASME J. Comput. Inform. Sci. Eng.
,
14
(
4
), p.
041006
. 10.1115/1.4028222
25.
Qian
,
B. S.
, and
Cheng
,
H. H.
,
2018
, “
Bio-Inspired Coalition Formation Algorithms for Multirobot Systems
,”
ASME J. Comput. Inform. Sci. Eng.
,
18
(
2
), p.
021010
. 10.1115/1.4039638
26.
Tseng
,
H. E.
,
Chang
,
C. C.
,
Lee
,
S. C.
, and
Huang
,
Y. M.
,
2019
, “
Hybrid Bidirectional Ant Colony Optimization (Hybrid BACO): An Algorithm for Disassembly Sequence Planning
,”
Eng. Appl. Artif. Intell.
,
83
, pp.
45
56
. 10.1016/j.engappai.2019.04.015
You do not currently have access to this content.