Skip Nav Destination
Issues
April 2014
ISSN 1555-1415
EISSN 1555-1423
In this Issue
Research Papers
Three-Dimensional Solid Brick Element Using Slopes in the Absolute Nodal Coordinate Formulation
J. Comput. Nonlinear Dynam. April 2014, 9(2): 021001.
doi: https://doi.org/10.1115/1.4024910
Topics:
Bricks
,
Degrees of freedom
,
Pendulums
,
Shapes
,
Deflection
,
Equations of motion
,
Polynomials
,
Displacement
,
Simulation
,
Cantilever beams
Accounting for Nonlinearities in Open-Loop Protocols for Symmetry Fault Compensation
J. Comput. Nonlinear Dynam. April 2014, 9(2): 021002.
doi: https://doi.org/10.1115/1.4025193
Topics:
Bifurcation
,
Excitation
,
Optimization
,
Steady state
,
Linear systems
,
Accounting
,
Frequency response
Hopf Instabilities in Free Piston Stirling Engines
J. Comput. Nonlinear Dynam. April 2014, 9(2): 021003.
doi: https://doi.org/10.1115/1.4025123
Topics:
Engines
,
Pistons
,
Stirling engines
,
Pressure
,
Limit cycles
,
Damping
,
Bifurcation
Bifurcation and Chaotic Analysis of Aeroelastic Systems
J. Comput. Nonlinear Dynam. April 2014, 9(2): 021004.
doi: https://doi.org/10.1115/1.4025124
Topics:
Bifurcation
,
Displacement
Optimal Control and Forward Dynamics of Human Periodic Motions Using Fourier Series for Muscle Excitation Patterns
J. Comput. Nonlinear Dynam. April 2014, 9(2): 021005.
doi: https://doi.org/10.1115/1.4024911
Topics:
Excitation
,
Muscle
,
Dynamics (Mechanics)
,
Fourier series
,
Optimization
Energetic and Dynamic Analysis of Multifrequency Legged Robot Locomotion With an Elastically Suspended Load
J. Comput. Nonlinear Dynam. April 2014, 9(2): 021006.
doi: https://doi.org/10.1115/1.4024778
Wiener–Askey and Wiener–Haar Expansions for the Analysis and Prediction of Limit Cycle Oscillations in Uncertain Nonlinear Dynamic Friction Systems
J. Comput. Nonlinear Dynam. April 2014, 9(2): 021007.
doi: https://doi.org/10.1115/1.4024851
Topics:
Bifurcation
,
Chaos
,
Friction
,
Limit cycles
,
Modeling
,
Oscillations
,
Polynomials
,
Vibration
,
Sliding friction
,
Displacement
Vibration Analysis of Postbuckled Timoshenko Beams Using a Numerical Solution Methodology
J. Comput. Nonlinear Dynam. April 2014, 9(2): 021008.
doi: https://doi.org/10.1115/1.4025473
Topics:
Boundary-value problems
,
Buckling
,
Free vibrations
,
Stress
,
Vibration
,
Vibration analysis
,
Mode shapes
,
Eigenvalues
Full State Hybrid Projective Synchronization and Parameters Identification for Uncertain Chaotic (Hyperchaotic) Complex Systems
J. Comput. Nonlinear Dynam. April 2014, 9(2): 021009.
doi: https://doi.org/10.1115/1.4025475
Topics:
Complex systems
,
Control equipment
,
Errors
,
Signals
,
Synchronization
,
Theorems (Mathematics)
Synchronization of Slowly Rotating Nonidentically Driven Pendula
J. Comput. Nonlinear Dynam. April 2014, 9(2): 021010.
doi: https://doi.org/10.1115/1.4025576
Topics:
Energy budget (Physics)
,
Synchronization
,
Pendulums
Toward Searching Possible Oscillatory Region in Order Space for Nonlinear Fractional-Order Systems
J. Comput. Nonlinear Dynam. April 2014, 9(2): 021011.
doi: https://doi.org/10.1115/1.4025477
Topics:
Chaos
,
Computer simulation
,
Nonlinear systems
,
Oscillations
,
Theorems (Mathematics)
,
Circuits
Distributed Operational Space Formulation of Serial Manipulators
J. Comput. Nonlinear Dynam. April 2014, 9(2): 021012.
doi: https://doi.org/10.1115/1.4025577
Topics:
Algorithms
Nonlinear System Modeling and Application Based on System Equilibrium Manifold and Expansion Model
J. Comput. Nonlinear Dynam. April 2014, 9(2): 021013.
doi: https://doi.org/10.1115/1.4025478
Topics:
Design
,
Engines
,
Equilibrium (Physics)
,
Manifolds
,
Modeling
,
Nonlinear systems
,
Simulation
,
Surges
,
Errors
,
Signals
Control Constraint of Underactuated Aerospace Systems
J. Comput. Nonlinear Dynam. April 2014, 9(2): 021014.
doi: https://doi.org/10.1115/1.4025629
Topics:
Actuators
,
Aircraft
,
Dynamics (Mechanics)
,
Feedforward control
,
Rotation
,
Trajectories (Physics)
,
Aerospace systems
,
Feedback
,
Manipulators
,
Wind
Operational Space Inertia for Closed-Chain Robotic Systems
J. Comput. Nonlinear Dynam. April 2014, 9(2): 021015.
doi: https://doi.org/10.1115/1.4025893
Topics:
Chain
,
End effectors
,
Robotics
,
Topology
,
Inertia (Mechanics)
Neural Dynamics and Newton–Raphson Iteration for Nonlinear Optimization
J. Comput. Nonlinear Dynam. April 2014, 9(2): 021016.
doi: https://doi.org/10.1115/1.4025748
Topics:
Optimization
Introducing and Analyzing a Novel Three-Degree-of-Freedom Spatial Tensegrity Mechanism
J. Comput. Nonlinear Dynam. April 2014, 9(2): 021017.
doi: https://doi.org/10.1115/1.4025894
Topics:
Actuators
,
Gravity (Force)
,
Kinematics
,
Springs
,
Tensegrity mechanisms
,
Equilibrium (Physics)
Maximizing Sensitivity Vector Fields: A Parametric Study
J. Comput. Nonlinear Dynam. April 2014, 9(2): 021018.
doi: https://doi.org/10.1115/1.4026366
Topics:
Attractors
,
Dynamic systems
,
Feedback
,
Control equipment
,
Splines
Application of a Homogeneous Balance Method to Exact Solutions of Nonlinear Fractional Evolution Equations
J. Comput. Nonlinear Dynam. April 2014, 9(2): 021019.
doi: https://doi.org/10.1115/1.4025770
Technical Brief
Stability and Hopf Bifurcation in a Three-Species Food Chain System With Harvesting and Two Delays
J. Comput. Nonlinear Dynam. April 2014, 9(2): 024501.
doi: https://doi.org/10.1115/1.4025670
Topics:
Bifurcation
,
Chain
,
Delays
,
Food products
,
Stability
,
Equilibrium (Physics)
Email alerts
RSS Feeds
An Efficient Iterative Technique for Solving Fractional Diffusion-Wave Equations
J. Comput. Nonlinear Dynam
Analytical Soliton Solutions, Bifurcation and Chaotic Behaviour of the Geophysical Boussinesq Equation
J. Comput. Nonlinear Dynam
Nonlinear Model Predictive Control of Urban Air Mobility Aircraft with Gust Disturbance
J. Comput. Nonlinear Dynam