Skip Nav Destination
Issues
April 2011
ISSN 1555-1415
EISSN 1555-1423
In this Issue
Research Papers
Nonlinear Dynamic Responses of Elastic Structures With Two Rectangular Liquid Tanks Subjected to Horizontal Excitation
J. Comput. Nonlinear Dynam. April 2011, 6(2): 021001.
doi: https://doi.org/10.1115/1.4002382
Topics:
Bifurcation
,
Excitation
,
Frequency response
,
Sloshing
,
Vibration
,
Equations of motion
,
Dimensions
Closed Form Control Gains for Zero Assignment in the Time Delayed System
J. Comput. Nonlinear Dynam. April 2011, 6(2): 021002.
doi: https://doi.org/10.1115/1.4002340
Topics:
Delays
,
Feedback
,
Stability
,
Steady state
,
Zero assignment
,
Degrees of freedom
,
Absorption
,
Vibration control
,
Distributed parameter systems
Multistage Adomian Decomposition Method for Solving NLP Problems Over a Nonlinear Fractional Dynamical System
J. Comput. Nonlinear Dynam. April 2011, 6(2): 021003.
doi: https://doi.org/10.1115/1.4002393
The Fractional Morphology and Growth Rate of the Nautilus pompilius: Preliminary Results Based on the -Fractional Trigonometry
J. Comput. Nonlinear Dynam. April 2011, 6(2): 021004.
doi: https://doi.org/10.1115/1.4002343
Topics:
Differential equations
,
Shells
,
Modeling
Nonlinear Fractional Derivative Models of Viscoelastic Impact Dynamics Based on Entropy Elasticity and Generalized Maxwell Law
J. Comput. Nonlinear Dynam. April 2011, 6(2): 021005.
doi: https://doi.org/10.1115/1.4002383
Topics:
Deformation
,
Elasticity
,
Entropy
,
Polymers
,
Stress-strain relations
,
Stress
,
Polymer colloids
,
Dynamics (Mechanics)
A Semi-Analytical Study of Stick-Slip Oscillations in Drilling Systems
J. Comput. Nonlinear Dynam. April 2011, 6(2): 021006.
doi: https://doi.org/10.1115/1.4002386
Topics:
Drill strings
,
Drilling
,
Dynamics (Mechanics)
,
Limit cycles
,
Stick-slip
,
Vibration
,
Damping
,
Delays
,
Friction
,
Bits (Tools)
Analytical Solution for the Nonlinear Dynamics of Planetary Gears
J. Comput. Nonlinear Dynam. April 2011, 6(2): 021007.
doi: https://doi.org/10.1115/1.4002392
Topics:
Planetary gears
,
Resonance
,
Stiffness
,
Separation (Technology)
,
Gears
A Penalty Formulation for Dynamics Analysis of Redundant Mechanical Systems
J. Comput. Nonlinear Dynam. April 2011, 6(2): 021008.
doi: https://doi.org/10.1115/1.4002510
Topics:
Actuators
,
Dynamics (Mechanics)
,
Algorithms
Fractional Optimal Control Problems With Specified Final Time
J. Comput. Nonlinear Dynam. April 2011, 6(2): 021009.
doi: https://doi.org/10.1115/1.4002508
Unified Galerkin- and DAE-Based Approximation of Fractional Order Systems
J. Comput. Nonlinear Dynam. April 2011, 6(2): 021010.
doi: https://doi.org/10.1115/1.4002516
Efficient Model Development for an Assembled Rotor of an Induction Motor Using a Condensed Modal Functional
J. Comput. Nonlinear Dynam. April 2011, 6(2): 021011.
doi: https://doi.org/10.1115/1.4002381
Topics:
Electromagnetic induction
,
Finite element model
,
Lamination
,
Motors
,
Optimization
,
Rotors
,
Tie rods
,
Mode shapes
,
Circuits
,
Magnetic cores
Computation of the Optimal Normal Load for a Mistuned and Frictionally Damped Bladed Disk Assembly Under Different Types of Excitation
J. Comput. Nonlinear Dynam. April 2011, 6(2): 021012.
doi: https://doi.org/10.1115/1.4002515
Topics:
Blades
,
Dampers
,
Disks
,
Excitation
,
Friction
,
Stress
,
White noise
,
Manufacturing
,
Statistics
Shil’nikov Analysis of Homoclinic and Heteroclinic Orbits of the T System
J. Comput. Nonlinear Dynam. April 2011, 6(2): 021013.
doi: https://doi.org/10.1115/1.4002685
Topics:
Chaos
,
Equilibrium (Physics)
,
Homoclinic orbits
,
Stability
,
Theorems (Mathematics)
,
Dynamic systems
,
Fractals
,
Nonlinear systems
An Explicit Difference Method for Solving Fractional Diffusion and Diffusion-Wave Equations in the Caputo Form
J. Comput. Nonlinear Dynam. April 2011, 6(2): 021014.
doi: https://doi.org/10.1115/1.4002687
Topics:
Diffusion (Physics)
,
Stability
,
Waves
,
Errors
Technical Briefs
Analysis of Wheel/Rail Contact Geometry on Railroad Turnout Using Longitudinal Interpolation of Rail Profiles
J. Comput. Nonlinear Dynam. April 2011, 6(2): 024501.
doi: https://doi.org/10.1115/1.4002342
Topics:
Interpolation
,
Rails
,
Wheels
,
Geometry
,
Wheelsets
General Method for Modeling Slope Discontinuities and T-Sections Using ANCF Gradient Deficient Finite Elements
J. Comput. Nonlinear Dynam. April 2011, 6(2): 024502.
doi: https://doi.org/10.1115/1.4002339
Topics:
Finite element analysis
,
Modeling
,
Displacement
Rule-Based Fractional Control of an Irrigation Canal
J. Comput. Nonlinear Dynam. April 2011, 6(2): 024503.
doi: https://doi.org/10.1115/1.4002509
Topics:
Canals
,
Control equipment
,
Irrigation (Agriculture)
,
Optimization
,
Water
Email alerts
RSS Feeds
An Efficient Analysis of Amplitude and Phase Dynamics in Networked MEMS-Colpitts Oscillators
J. Comput. Nonlinear Dynam
Nonlinear Dynamics of a Magnetic Shape Memory Alloy Oscillator
J. Comput. Nonlinear Dynam (December 2024)
Influences of Tooth Crack on Dynamic Characteristics of a Multi-Stage Gear Transmission System Considering the Flash Temperature
J. Comput. Nonlinear Dynam (December 2024)
Data-Driven Modeling of Tire–Soil Interaction With Proper Orthogonal Decomposition-Based Model Order Reduction
J. Comput. Nonlinear Dynam (December 2024)