This work presents a survey of the current and ongoing research by the authors who use the divide-and-conquer algorithm (DCA) to reduce the computational burden associated with various aspects of multibody dynamics. This work provides a brief discussion of various topics that are extensions of previous DCA-based algorithms or novel uses of this algorithm in the multibody dynamics context. These topics include constraint error stabilization, spline-based modeling of flexible bodies, model fidelity transitions for flexible-body systems, and large deformations of flexible bodies. It is assumed that the reader is familiar with the “Advances in the Application of the DCA to Multibody System Dynamics” text as the notation used in this work is explained therein and provides a summary of how the DCA has been used previously.

References

1.
Mukherjee
,
R.
, and
Anderson
,
K. S.
,
2007
, “
An Orthogonal Complement Based Divide-and-Conquer Algorithm for Constrained Multibody Systems
,”
Nonlinear Dyn.
,
48
(
1–2
), pp.
199
215
.10.1007/s11071-006-9083-3
2.
Khan
,
I. M.
, and
Anderson
,
K. S.
,
2013
, “
Performance Investigation and Constraint Stabilization Approach for the Orthogonal Complement-Based Divide-and-Conquer Algorithm
,”
Mech. Mach. Theory
,
67
, pp.
111
121
.10.1016/j.mechmachtheory.2013.04.009
3.
Baumgarte
,
J.
,
1972
, “
Stabilization of Constraints and Integrals of Motion in Dynamical Systems
,”
Comput. Meth. Appl. Mech. Eng.
,
1
(
1
), pp.
1
16
.10.1016/0045-7825(72)90018-7
4.
Petzold
,
L. R.
,
Ren
,
Y.
, and
Maly
,
T.
,
1997
, “
Regularization of Higher-Index Differential-Algebraic Equations With Rank-Deficient Constraints
,”
SIAM J. Sci. Comput.
,
18
(
3
), pp.
753
754
.10.1137/S1064827593276041
5.
Ascher
,
U. M.
,
Chin
,
H.
,
Petzold
,
L. R.
, and
Reich
,
S.
,
1995
, “
Stabilization of Constrained Mechanical Systems With DAEs and Invariant Manifolds
,”
Mech. Struct. Mach.
,
23
(
2
), pp.
135
157
.10.1080/08905459508905232
6.
Flores
,
P.
,
Ambrósio
,
J.
,
Claro
,
J.
, and
Lankarani
,
H.
,
2008
,
Kinematics and Dynamics of Multibody Systems With Imperfect Joints: Models and Case Studies
(Lecture Notes in Applied and Computational Mechanics),
Springer
, Berlin, Heidelberg, pp. 23–45.
7.
Kim
,
J. K.
,
Chung
,
I. S.
, and
Lee
,
B. H.
,
1990
, “
Determination of the Feedback Coefficients for the Constraint Violation Stabilization Method
,”
Proc. I. Mech. Eng. C J. Mech. Eng. Sci.
,
204
, pp. 233–242.10.1243/PIME_PROC_1990_204_101_02
8.
Lin
,
S.
, and
Huang
,
J.
,
2000
, “
Parameters Selection for Baumgarte's Constraint Stabilization Method Using the Predictor–Corrector Approach
,”
J. Guid., Control, Dyn.
,
23
(
3
), pp.
566
570
.10.2514/2.4569
9.
Khan
,
I. M.
,
Poursina
,
M.
, and
Anderson
,
K. S.
,
2013
, “
Model Transitions and Optimization Problem in Multi-Flexible-Body Systems: Application to Modeling Molecular Systems
,”
Comput. Phys. Commun.
,
184
(
7
), pp.
1717
1728
.10.1016/j.cpc.2013.02.025
10.
Mukherjee
,
R. M.
, and
Anderson
,
K. S.
,
2007
, “
Efficient Methodology for Multibody Simulations With Discontinuous Changes in System Definition
,”
Multibody Syst. Dyn.
,
18
(
2
), pp.
145
168
.10.1007/s11044-007-9075-1
11.
Khan
,
I.
,
Ahn
,
W.
,
Anderson
,
K.
, and
De
,
S.
,
2013
, “
A Logarithmic Complexity Floating Frame of Reference Formulation With Interpolating Splines for Articulated Multi-Flexible-Body Dynamics
,”
Int. J. Non Linear Mech.
,
57
, pp.
146
153
.10.1016/j.ijnonlinmec.2013.07.002
12.
Mukherjee
,
R.
, and
Anderson
,
K. S.
,
2007
, “
A Logarithmic Complexity Divide-and-Conquer Algorithm for Multi-Flexible Articulated Body Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
2
(
1
), pp.
10
21
.10.1115/1.2389038
13.
Craig
,
R.
, and
Kurdila
,
A.
,
2011
,
Fundamentals of Structural Dynamics
, Wiley,
Hoboken, NJ
.
14.
Wasfy
,
T. M.
, and
Noor
,
A. K.
,
2003
, “
Computational Strategies for Flexible Multibody Systems
,”
ASME Appl. Mech. Rev.
,
56
(
6
), pp.
553
613
.10.1115/1.1590354
15.
Khan
,
I. M.
, and
Anderson
,
K. S.
,
2013
, “
Divide-and-Conquer-Based Large Deformation Formulations for Multi-Flexible Body Systems
,”
ASME
Paper No. DETC2013-12218.10.1115/DETC2013-12218
16.
Khan
,
I. M.
,
2013
, “
Parallelizable Multibody Algorithms for Efficient Multi-Resolution Modeling and Simulation of Dynamic Systems
,” Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, NY.
17.
Khan
,
I. M.
, and
Anderson
,
K. S.
,
2014
, “
Large Deformation Formulation for Multi-Flexible-Body Systems in the Divide-and-Conquer Framework
,”
Multibody System Dynamics
(in review).
18.
Belytschko
,
T.
, and
Hsieh
,
B.
,
1973
, “
Non-Linear Transient Finite Element Analysis With Convected Co-Ordinates
,”
Int. J. Numer. Methods Eng.
,
7
(
3
), pp.
255
271
.10.1002/nme.1620070304
19.
Belytschko
,
T.
,
Schwer
,
L.
, and
Klein
,
M.
,
1977
, “
Large Displacement, Transient Analysis of Space Frames
,”
Int. J. Numer. Methods Eng.
,
11
(
1
), pp.
65
84
.10.1002/nme.1620110108
20.
Simo
,
J.
,
1985
, “
A Finite Strain Beam Formulation. The 3D Dynamic Problem. Part I
,”
Comput. Meth. Appl. Mech. Eng.
,
49
(
1
), pp.
55
70
.10.1016/0045-7825(85)90050-7
21.
Simo
,
J.
, and
Vu-Quoc
,
L.
,
1986
, “
A 3D Finite-Strain Rod Model. Part II: Computational Aspects
,”
Comput. Meth. Appl. Mech. Eng.
,
58
(
1
), pp.
79
116
.10.1016/0045-7825(86)90079-4
22.
Shabana
,
A. A.
,
1996
, “
An Absolute Nodal Coordinate Formulation for the Large Rotation and Deformation Analysis of Flexible Bodies
,” Dept of Mechanical Engineering, University of Illinois, Chicago, Technical Report No. MBS96-1-UIC.
23.
Shabana
,
A.
,
1998
,
Dynamics of Multibody Systems
,
Cambridge University Press
, New York.
24.
Berzeri
,
M.
, and
Shabana
,
A.
,
2000
, “
Development of Simple Models for the Elastic Forces in the Absolute Nodal Co-ordinate Formulation
,”
J. Sound Vib.
,
235
(
4
), pp.
539
565
.10.1006/jsvi.1999.2935
25.
Campanelli
,
M.
,
Berzeri
,
M.
, and
Shabana
,
A.
,
2000
, “
Performance of the Incremental and Non-Incremental Finite Element Formulations in Flexible Multibody Problems
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
498
507
.10.1115/1.1289636
26.
Jain
,
A.
,
Vaidehi
,
N.
, and
Rodriguez
,
G.
,
1993
, “
A Fast Recursive Algorithm for Molecular Dynamics Simulation
,”
J. Comput. Phys.
,
106
(
2
), pp.
258
268
.10.1016/S0021-9991(83)71106-X
27.
Chun
,
H. M.
,
Padilla
,
C. E.
,
Chin
,
D. N.
,
Watenabe
,
M.
,
Karlov
,
V. I.
,
Alper
,
H. E.
,
Soosaar
,
K.
,
Blair
,
K. B.
,
Becker
,
O. M.
,
Caves
,
L. S. D.
,
Nagle
,
R.
,
Haney
,
D. N.
, and
Farmer
,
B. L.
,
2000
, “
MBO(N)D: A Multibody Method for Long-Time Molecular Dynamics Simulations
,”
J. Comput. Chem.
,
21
(
3
), pp.
159
184
.10.1002/(SICI)1096-987X(200002)21:3<159::AID-JCC1>3.0.CO;2-J
28.
Rossi
,
R.
,
Isorce
,
M.
,
Morin
,
S.
,
Flocard
,
J.
,
Arumugam
,
K.
,
Crouzy
,
S.
,
Vivaudou
,
M.
, and
Redon
,
S.
,
2007
, “
Adaptive Torsion-Angle Quasi-Statics: A General Simulation Method With Applications to Protein Structure Analysis and Design
,”
ISMB/ECCB (Supplement of Bioinformatics)
, Vol.
23
, pp.
408
417
.10.1093/bioinformatics/btm191
29.
Mukherjee
,
R. M.
,
Crozier
,
P. S.
,
Plimpton
,
S. J.
, and
Anderson
,
K. S.
,
2008
, “
Substructured Molecular Dynamics Using Multibody Dynamics Algorithms
,”
Int. J. Non Linear Mech.
,
43
(
10
), pp.
1040
1055
.10.1016/j.ijnonlinmec.2008.04.003
30.
Grudinin
,
S.
, and
Redon
,
S.
,
2010
, “
Practical Modeling of Molecular Systems With Symmetries
,”
J. Comput. Chem.
,
31
(
9
), pp.
1799
1814
.10.1002/jcc.21434
31.
Poursina
,
M.
, and
Anderson
,
K. S.
,
2013
, “
Canonical Ensemble Simulation of Biopolymers Using a Coarse-Grained Articulated Generalized Divide-and-Conquer Scheme
,”
Comput. Phys. Commun.
,
184
(
3
), pp.
652
660
.10.1016/j.cpc.2012.10.029
32.
Poursina
,
M.
,
Bhalerao
,
K. D.
,
Flores
,
S.
,
Anderson
,
K. S.
, and
Laederach
,
A.
,
2011
, “
Strategies for Articulated Multibody-Based Adaptive Coarse Grain Simulation of RNA
,”
Methods Enzymol.
,
487
, pp.
73
98
.10.1016/B978-0-12-381270-4.00003-2
33.
Poursina
,
M.
, and
Anderson
,
K. S.
,
2012
, “
Long-Range Force and Moment Calculations in Multiresolution Simulations of Molecular Systems
,”
J. Comput. Phys.
,
231
(
21
), pp.
7237
7254
.10.1016/j.jcp.2012.06.041
34.
Poursina
,
M.
,
Anderson
,
K. S.
, and
Laflin
,
J.
,
2011
, “
Efficient Force and Moment Calculation in Multiresolution Modeling of Biopolymers
,”
Proceedings of the ECCOMAS Thematic Conference - Multibody Systems Dynamics
, Brussels, Belgium, Jul. 4–7.
35.
Kane
,
T. R.
,
Likins
,
P. W.
, and
Levinson
,
D. A.
,
1983
,
Spacecraft Dynamics
,
Mcgraw-Hill
, New York.
36.
Greengard
,
L.
, and
Rokhlin
,
V.
,
1997
, “
A Fast Algorithm for Particle Simulations
,”
J. Comput. Phys.
,
135
(
2
), pp.
280
292
.10.1006/jcph.1997.5706
You do not currently have access to this content.