This paper presents a methodology for the characterization and scaling of the response of structures having different shapes, sizes, and boundary conditions that are under impact by spherical objects. The objectives are to demonstrate the accuracy of a new bilinear contact law that accounts for permanent indentation in the contact zone, and to show the efficacy of a characterization diagram in the analysis and design of structures subject to impact. The characterization diagram shows the normalized functional relationship between the maximum impact force and three nondimensional parameters that cover the complete dynamic spectrum for low-velocity impact. The validity of using the bilinear elastoplastic contact law is demonstrated by both finite element (FE) and Rayleigh-Ritz discretization procedures for simply-supported plates. The efficacy of the characterization diagram, which was developed using simple structural models, is demonstrated by the FE simulations of more complicated and realistic structures and boundary conditions (clamped, stiffened plates, and cylindrical panels). All of the necessary parameters needed for the characterization are ‘measured’ using the FE models simulating real-world experiments. Impact parameters are varied to cover the complete dynamic spectrum with excellent results.

References

1.
Goldsmith
,
W.
,
1960
,
Impact
,
Edward Arnold
,
London
.
2.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
New York
.
3.
Cantwell
,
W. J.
and
Morton
,
J.
,
1991
, “
The Impact Resistance of Composite Materials—A Review
,”
Composites
,
22
, pp.
347
361
.10.1016/0010-4361(91)90549-V
4.
Abrate
,
S.
,
1998
,
Impact on Composite Structures
,
Cambridge University Press
,
New York
.
5.
Stronge
,
W. J.
,
2000
,
Impact Mechanics
,
Cambridge University Press
,
New York
.
6.
Gilardi
,
G.
and
Sharf
,
I.
,
2002
, “
Literature Survey of Contact Dynamics Modeling
,”
Mech. Mach. Theory
,
37
, pp.
1213
1239
.10.1016/S0094-114X(02)00045-9
7.
Seifried
,
R.
,
Schiehlen
,
W.
, and
Eberhard
,
P.
,
2010
, “
The Role of the Coefficient of Restitution on Impact Problems in Multi-Body Dynamics
,”
Proc. Inst. Mech. Eng. Part K: J. Multi-Body Dyn.
,
224
, pp.
279
289
.
8.
Tan
,
T. M.
and
Sun
,
C. T.
,
1985
, “
Use of Statistcal Indentation Laws in the Impact Analysis of Laminated Composite Plates
,”
ASME J. Appl. Mech.
,
52
, pp.
6
12
.10.1115/1.3169029
9.
Yigit
,
A. S.
and
Christoforou
,
A.P.
,
1994
, “
On the Impact of a Spherical Indenter and an Elastic-Plastic Transversely Isotropic Half-Space
,”
Composites Eng.
,
4
(
11
), pp.
1143
1152
.10.1016/0961-9526(95)91288-R
10.
Zhang
,
X.
and
Vu-Quoc
,
L.
,
2002
, “
Modeling the Dependence of the Coefficient of Restitution on the Impact Velocity in Elasto-Plastic Collisions
,”
Int. J. Impact Eng.
,
27
, pp.
317
341
.10.1016/S0734-743X(01)00052-5
11.
Wu
,
C.
,
Li
,
L.
, and
Thornton
,
C.
,
2003
, “
Rebound Behavior of Spheres for Plastic Impacts
,”
Int. J. Impact Eng.
,
28
, pp.
929
946
.10.1016/S0734-743X(03)00014-9
12.
Jackson
,
R. L.
,
Green
,
I.
, and
Marghitu
,
D. B.
,
2010
, “
Predicting the Coefficient of Restitution of Impacting Elastic-Perfectly Plastic Spheres
,”
Nonlinear Dyn.
,
60
, pp.
217
229
.10.1007/s11071-009-9591-z
13.
Hunt
,
K. H.
and
Crossley
,
F. R. E.
,
1975
, “
Coefficient of Restitution Interpreted as Damping in Vibroimpact
,”
ASME J. Appl. Mech.
,
42
, pp.
440
445
.10.1115/1.3423596
14.
Khulief
,
Y. A.
and
Shabana
,
A. A
,
1987
, “
A Continuous Force Model for the Impact Analysis of Flexible Multibody Systems
,”
Mech. Mach. Theory
,
22
, pp.
213
224
.10.1016/0094-114X(87)90004-8
15.
Lankarani
,
H. M.
and
Nikravesh
,
P. E.
,
1994
, “
Continuous Contact Force Models for Impact Analysis in Multi-Body Systems
,”
Nonlinear Dyn.
,
5
, pp.
193
207
.
16.
Yigit
,
A. S.
,
Christoforou
,
A. P.
, and
Majeed
,
A. M.
,
2011
, “
A Nonlinear Visco-Elastoplastic Impact Model and the Coefficient of Restitution
,”
Nonlinear Dyn.
,
66
, pp.
509
521
.10.1007/s11071-010-9929-6
17.
Christoforou
,
A. P.
and
Yigit
,
A. S.
,
1998
, “
Characterization of Impact in Composite Plates
,”
Compos. Struct.
,
43
, pp.
15
24
.10.1016/S0263-8223(98)00087-7
18.
Christoforou
,
A. P.
and
Yigit
,
A. S.
,
1998
, “
Effect of Flexibility on Low-Velocity Impact Response
,”
J. Sound Vibr.
,
217
(
3
), pp.
563
578
.10.1006/jsvi.1998.1807
19.
Choi
,
I. H.
and
Lim
,
C. H.
,
2004
, “
Low-Velocity Impact Analysis of Composite Laminates Using Linearized Contact Law
,”
Compos. Struct.
,
66
, pp.
125
132
.10.1016/j.compstruct.2004.04.030
20.
Apetre
,
N. A.
,
Sankara
,
B. V.
, and
Ambur
,
D. R
,
2006
, “
Low-Velocity Impact Response of Sandwich Beams With Functionally Graded Core
,”
Int. J. Solids Struct.
,
43
, pp.
2479
2496
.10.1016/j.ijsolstr.2005.06.003
21.
Pashah
,
S.
,
Massenzio
,
M.
, and
Jacquelin
,
E.
,
2008
, “
Prediction of Structural Response for Low Velocity Impact
,”
Int. J. of Impact Eng.
,
35
, pp.
119
132
.10.1016/j.ijimpeng.2006.12.006
22.
Doyle
,
J. F.
,
1987
, “
Experimentally Determining the Contact Force During the Transverse Impact of an Orthotropic Plate
,”
J. Sound Vibr.
,
118
(
3
), pp.
441
448
.10.1016/0022-460X(87)90363-4
23.
Bucinell
,
R. B.
,
Nuismer
,
R. J.
, and
Koury
,
J. L.
,
1991
, “
Response of Composite Plates to Quasi-Static Impact Events
,”
Composite Materials: Fatigue and Fracture
(Third Volume),
ASTM Spec. Tech. Publ.
,
1110
, pp.
528
549
.
24.
Swanson
,
S. R.
,
1992
, “
Limits of Quasi-Static Solutions in Impact of Composite Structures
,”
Composites Eng.
,
2
, pp.
261
267
.10.1016/0961-9526(92)90009-U
25.
Olsson
,
R.
,
1992
, “
Impact Response of Orthotropic Composite Plates Predicted from a One-Parameter Differential Equation
,”
AIAA J.
,
30
, pp.
1587
1596
.10.2514/3.11105
26.
Yigit
,
A. S.
and
Christoforou
,
A. P.
,
2007
, “
Limits of Asymptotic Solutions in Low-Velocity Impact of Composite Plates
,”
Compos. Struct.
,
81
(
4
), pp.
568
574
.10.1016/j.compstruct.2006.10.006
27.
Christoforou
,
A. P.
and
Yigit
,
A. S.
,
2009
, “
Scaling of Low-Velocity Impact Response in Composite Structures
,”
Compos. Struct.
,
91
, pp.
358
365
.10.1016/j.compstruct.2009.06.002
28.
Christoforou
,
A. P.
,
Yigit
,
A. S.
,
Cantwell
,
W. J.
, and
Yang
,
F.
,
2010
, “
Impact Response Characterization in Composite Plates – Experimental Validation
,”
Appl. Compos. Mater.
,
17
(
5
), pp.
463
472
.10.1007/s10443-010-9140-4
29.
Meirovitch
,
L.
,
1980
,
Computational Methods in Structural Dynamics
,
Sijthoff & Noordhoff, Alphen aan den Rijn
,
The Netherlands
.
30.
Majeed
,
A. M.
,
Yigit
,
A. S.
, and
Christoforou
,
A. P.
,
2011
, “
Modeling and Analysis of Elastoplastic Impacts on Supported Composites
,”
Key Eng. Mater.
,
471–472
, pp.
367
372
.10.4028/www.scientific.net/KEM.471-472.367
31.
Timoshenko
,
S. P.
and
Woinowsky-Krieger
,
S.
,
1959
,
Theory of Plates and Shells
, 2nd ed.,
McGraw-Hill
,
Singapore
.
You do not currently have access to this content.