This paper presents a semianalytical method, the modified multistep differential transform method (MMSDTM), for solving linear and nonlinear fractional-order differential equations with the order between 0 and 2. This method can be considered as a variant of the predictor-corrector method (PCM). The multistep differential transform method (MSDTM), which does not take the memory effect into account and yields unsatisfactory solution very rapidly, is first used to find an estimation as the predictor of the solution. In the corrector procedure, the memory term associated with the fractional-order derivative is decomposed by the subtraction of two integrals; one is abnormal with singularity and the other is normal without singularity and the two integrals are calculated by using the MSDTM and a simple numerical scheme, respectively. Four illustrative examples are given to show that the MMSDTM requires much less computational cost and retains high computational accuracy, compared with the widely used PCM.

References

1.
Koeller
,
R. C.
,
1984
, “
Applications of Fractional Calculus to the Theory of Viscoelasticity
,”
ASME J. Appl. Mech.
,
51
(
2
), pp.
299
307
.10.1115/1.3167616
2.
Cao
,
J.
,
Ma
,
C.
,
Xie
,
H.
, and
Jiang
,
Z.
,
2010
, “
Nonlinear Dynamics of the Duffing System With Fractional Order Damping
,”
ASME J. Comput. Nonlinear Dyn.
,
5
, p.
041012
.10.1115/1.4002092
3.
Ingman
,
D.
, and
Suzdalnitsky
,
J.
,
2008
, “
Dynamic Viscoelastic Rod Stability Modeling by Fractional Differential Operator
,”
ASME J. Appl. Mech.
,
75
, p.
014502
.10.1115/1.2745825
4.
Liebst
,
B. S.
, and
Torvik
,
P. J.
,
1996
, “
Asymptotic Approximations for Systems Incorporating Fractional Derivative Damping
,”
ASME J. Dyn. Syst., Meas., Control
,
118
(
3
), pp.
572
579
.10.1115/1.2801182
5.
Sabatier
,
J.
,
Agrawal
,
O. P.
, and
Tenreiro Machado
,
J. A.
,
2007
,
Advances in Fractional Calculus-Theoretical Developments and Applications in Physics and Engineering
,
Springer
,
Berlin
.
6.
Schneider
,
W. R.
, and
Wyss
,
W.
,
1989
, “
Fractional Diffusion and Wave Equations
,”
J. Math. Phys
,
30
, pp.
134
144
.10.1063/1.528578
7.
Cao
,
J.
,
Cao
,
B.
,
Zhang
,
X.
, and
Wen
,
G.
,
2008
, “
Fractional Proportional Integral Control for Pneumatic Position Servo Systems
,”
Proceedings of the IEEE/ ASME International Conference on Mechatronic and Embedded Systems and Applications
,
Beijing
, pp.
347
352
.
8.
Agrawal
,
O. P.
,
2004
, “
A General Formulation and Solution Scheme for Fractional Optimal Control Problems
,”
Nonlinear Dyn.
,
38
, pp.
323
337
.10.1007/s11071-004-3764-6
9.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic
,
San Diego
.
10.
Kilbas
,
A. A.
,
Srivastava
,
H. M.
, and
Trujillo
,
J. J.
,
2006
,
Theory and Applications of Fractional Differential Equations
,
Elsevier
,
Amsterdam
.
11.
Tenreiro Machado
,
J. A.
,
Kiryakova
,
V.
, and
Mainardi
,
F.
,
2011
, “
Recent History of Fractional Calculus
,”
Commun. Nonlinear Sci. Numer. Simul.
,
3
(
16
), pp.
1140
1153
.10.1016/j.cnsns.2010.05.027
12.
Tenreiro Machado
,
J. A.
, and
Galhano
,
A.
,
2008
, “
Fractional Dynamics: A Statistical Perspective
,”
ASME J. Comput. Nonlinear Dyn.
,
3
, p.
021201
.10.1115/1.2833481
13.
Bagley
,
R. L.,
and
Torvik
,
P. J.
,
1984
, “
On the Appearance of the Fractional Derivative in the Behavior of Real Materials
,”
ASME J. Appl. Mech.
,
51
(
4
), pp.
294
298
.10.1115/1.3167615
14.
Eldred
,
L. B.
,
Baker
,
W. P.
, and
Palazotto
A. N.
,
1995
, “
Kelvin-Voigt Versus Fractional Derivative Model as Constitutive Relations for Viscoelastic Materials
,”
AIAA J.
,
33
, pp.
547
550
.10.2514/3.12471
15.
Chen
,
H. S.
,
Hou
,
T. T.
, and
Feng
,
Y. P.
,
2010
, “
Fractional Model for the Physical Aging of Polymers
,”
Sci. Sin. Phys. Mech. Astron.
,
40
, pp.
1267
1274
.
16.
Coronado
,
A.
,
Trindade
,
M. A.
, and
Sampaio
,
R.
,
2002
, “
Frequency-Dependent Viscoelastic Models for Passive Vibration Isolation Systems
,”
Shock Vib.
,
9
, pp.
253
264
,
Available at:
http://iospress.metapress.com/content/xh4255aq40db7eu7/.
17.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V.
,
2010
, “
Application of Fractional Calculus for Dynamic Problems of Solid Mechanics: Novel Trends and Recent Results
,”
Appl. Mech. Rev.
,
63
, p.
010801
.10.1115/1.4000563
18.
Miller
,
K. S.,
and
Ross
,
B.
,
1993
,
An Introduction to the Fractional Calculus and Fractional Differential Equations
,
Wiley
,
New York
.
19.
Diethelm
,
K.
,
Ford
,
N. J.
, and
Freed
,
A. D.
,
2002
, “
A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations
,”
Nonlinear Dyn.
,
29
, pp.
3
22
.10.1023/A:1016592219341
20.
Deng
,
W. H.
,
2007
, “
Short Memory Principle and a Predictor-Corrector Approach for Fractional Differential Equations
,”
J. Comput. Appl. Math.
,
206
, pp.
174
188
.10.1016/j.cam.2006.06.008
21.
Matsuzaka
,
T.
, and
Nakagawa
,
M.
,
2003
, “
Chaos Neuron Model With Fractional Differential Equation
,”
J. Phys. Soc. Jpn.
,
72
, pp.
2678
2684
.10.1143/JPSJ.72.2678
22.
Diethelm
,
K.
,
Ford
,
N. J.
,
Freed
,
A. D.
, and
Luchko
,
Yu.
,
2005
, “
Algorithms for the Fractional Calculus: A Selection of Numerical Methods
,”
Comput. Methods Appl. Mech. Eng.
,
194
, pp.
743
773
.10.1016/j.cma.2004.06.006
23.
Daftardar-Geji
,
V.
, and
Jafari
,
H.
,
2005
, “
Adomian Decomposition: A Tool for Solving a System of Fractional Differential Equations
,”
J. Math. Anal. Appl.
,
301
, pp.
508
518
.10.1016/j.jmaa.2004.07.039
24.
Saha
,
R. S.
, and
Bera
,
R. K.
,
2005
, “
Analytical Solution of the Bagley-Torvik Equation by Adomian Decomposition Method
,”
Appl. Math. Comput.
,
168
, pp.
398
410
.10.1016/j.amc.2004.09.006
25.
Saha
,
R. S.
,
2009
, “
Analytical Solution for the Space Fractional Diffusion Equation by Two-Step Adomian Decomposition Method
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
, pp.
1295
1306
.10.1016/j.cnsns.2008.01.010
26.
Cafagna
,
D.
, and
Grassi
,
G.
,
2008
, “
Fractional-Order Chua’s Circuit: Time-Domain Analysis, Bifurcation, Chaotic Behavior and Test for Chaos
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
,
3
(
18
), pp.
615
639
. 10.1142/S0218127408020550
27.
Saha
,
R. S.
,
Poddar
,
B. P.
, and
Bera
,
R. K.
,
2005
, “
Analytical Approximate Solution of a Dynamic System Containing Fractional Derivative of Order One-Half by Adomian Decomposition Method
,”
ASME J. Appl. Mech.
,
72
, pp.
290
295
.10.1115/1.1839184
28.
Momani
,
S.
, and
Odibat
,
Z.
,
2007
, “
Numerical Approach to Differential Equations of Fractional Order
,”
J. Comput. Appl. Math.
,
207
, pp.
96
110
.10.1016/j.cam.2006.07.015
29.
Drăgănescu
,
G. E.
,
2006
, “
Application of a Variational Iteration Method to Linear and Nonlinear Viscoelastic Models With Fractional Derivatives
,”
J. Math. Phys.
,
47
, p.
082902
.10.1063/1.2234273
30.
Cang
,
J.
,
Tan
,
Y.
,
Xu
,
H.
, and
Liao
,
S. J.
,
2009
, “
Series Solutions of Non-Linear Riccati Differential Equations With Fractional Order
,”
Chaos Solitons Fractals
,
40
, pp.
1
9
.10.1016/j.chaos.2007.04.018
31.
Li
,
C. P.
, and
Wang
,
Y. H.
,
2009
, “
Numerical Algorithm Based on Adomian Decomposition for Fractional Differential Equations
,”
Comput. Math. Appl.
,
57
, pp.
1672
1681
.10.1016/j.camwa.2009.03.079
32.
Pálfalvi
,
A.
,
2010
, “
Efficient Solution of a Vibration Equation Involving Fractional Derivatives
,”
Int. J. Non-Linear Mech.
,
45
, pp.
169
175
.10.1016/j.ijnonlinmec.2009.10.006
33.
Zhou
,
J. K.
,
1986
,
Differential Transformation and its Applications for Electrical Circuits
,
Huazhong University Press
,
Wuhan
(in Chinese).
34.
Odibat
,
Z. M.
,
Bertelle
,
C.
,
Aziz-Alaoui
,
M. A.
, and
Duchamp
,
G. H. E.
,
2010
, “
A Multi-Step Differential Transform Method and Application to Non-Chaotic or Chaotic Systems
,”
J. Comput. Math. Appl.
,
59
, pp.
1462
1472
. 10.1016/j.camwa.2009.11.005
35.
Ertük
,
V. S.
,
Odibat
,
Z. M.
, and
Momani
,
S.
,
2011
, “
An Approximate Solution of a Fractional Order Differential Equation Model of Human T-Cell Lymphotropic Virus I (HTLV-I) Infection of CD4+ T-Cells
,”
Comput. Math. Appl.
,
3
(
62
), pp.
996
1002
. 10.1016/j.camwa.2011.03.091
36.
Odibat
,
Z. M.
,
Momani
,
S.
, and
Ertürk
,
V. S.
,
2008
, “
Generalzied Differential Transform Method: Application to Differential Equations of Fractional Order
,”
J. Appl. Math. Comput.
,
197
, pp.
467
477
.10.1016/j.amc.2007.07.068
37.
Ford
,
N. J.
, and
Simpson
,
A. C.
,
2001
, “
The Numerical Solution of Fractional Differential Equations: Speed Versus Accuracy
,”
Numer. Algorithms
,
26
, pp.
333
346
.10.1023/A:1016601312158
38.
Momani
,
S.
, and
Shawagfeh
,
N.
,
2006
, “
Decomposition Method for Solving Fractional Riccati Differential Equations
,”
Appl. Math. Comput.
,
182
, pp.
1083
1092
.10.1016/j.amc.2006.05.008
39.
Hosseinnia
,
S. H.
,
Ranjbar
,
A.
, and
Momani
,
S.
,
2008
, “
Using an Enhanced Homotopy Perturbation Method in Fractional Differential Equations Via Deforming the Linear Part
,”
Comput. Math. Appl.
,
56
, pp.
3138
3149
.10.1016/j.camwa.2008.07.002
40.
Odibat
,
Z. M.
,
2011
, “
On Legendre Polynomial Approximation With the VIM or HAM for Numerical Treatment of Nonlinear Fractional Differential Equations
,”
J. Comput. Appl. Math.
,
235
, pp.
2956
2968
.10.1016/j.cam.2010.12.013
41.
Sun
,
K. H.
,
Wang
,
X.
, and
Sprott
,
J. C.
,
2010
, “
Bifurcations and Chaos in Fractional-Order Simplified Lorenz System
,”
Int. J. Bifurcation Chaos
,
4
(
20
), pp.
1209
1219
.10.1142/S0218127410026411
You do not currently have access to this content.