The treatment of rotations in rigid body and Cosserat solids dynamics is challenging. In most cases, at some point in the formulation, a parameterization of rotation is introduced and the intrinsic nature of the equations of motions is lost. Typically, this step considerably complicates the form of the equations and increases the order of the nonlinearities. Clearly, it is desirable to bypass parameterization of rotation, leaving the equations of motion in their original, intrinsic form. This has prompted the development of rotationless and intrinsic formulations. This paper focuses on the latter approach. The most famous example of intrinsic formulation is probably Euler’s second law for the motion of a rigid body rotating about an inertial point. This equation involves angular velocities solely, with algebraic nonlinearities of the second-order at most. Unfortunately, this intrinsic equation also suffers serious drawbacks: the angular velocity of the body is computed, but not its orientation, the body is “unaware” of its inertial orientation. This paper presents an alternative approach to the problem by proposing discrete statements of the rotation kinematic compatibility equation, which provide solutions for both rotation tensor and angular velocity without relying on a parameterization of rotation. The formulation is also generalized using the motion formalism, leading to very simple discretized equations of motion.

References

1.
García de Jalón
,
J.
,
Serna
,
M. A.
, and
Avilés
,
R.
,
1981
, “
Computer Method for Kinematic Analysis of Lower-Pair Mechanisms - I Velocities and Accelerations
,”
Mech. Mach. Theory
16
(
5
), pp.
543
556
.10.1016/0094-114X(81)90026-4
2.
García de Jalón
,
J.
,
Serna
,
M. A.
, and
Avilés
,
R.
,
1981
, “
Computer Method for Kinematic Analysis of Lower-Pair Mechanisms - II Position Problems
,”
Mech. Mach. Theory
16
(
5
), pp.
557
566
.10.1016/0094-114X(81)90027-6
3.
García de Jalón
,
J.
,
Serna
,
M. A.
,
Viadero
,
F.
, and
Flaquer
,
J.
,
1982
, “
A Simple Numerical Method for the Kinematic Analysis of Spatial Mechanisms
,”
J. Mech. Des.
,
104
, pp.
78
82
.10.1115/1.3256328
4.
Tárrago
,
J. A.
,
Serna
,
M. A.
,
Bastero
,
C.
, and
García de Jalón
,
J.
,
1982
, “
A Computer Method for the Finite Displacement Problem in Spatial Mechanisms
,”
J. Mech. Des.
,
104
, pp.
869
874
.10.1115/1.3256450
5.
García de Jalón
,
J.
,
Unda
,
J.
, and
Avello
,
A.
,
1986
, “
Natural Coordinates for the Computer Analysis of Multibody Systems
,”
Comput. Methods Appl. Mech. Eng.
,
56
, pp.
309
327
.10.1016/0045-7825(86)90044-7
6.
Betsch
,
P.
, and
Steinmann
,
P.
,
2001
, “
Constrained Integration of Rigid Body Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
191
, pp.
467
488
.10.1016/S0045-7825(01)00283-3
7.
Leyendecker
,
S.
,
Betsch
,
P.
, and
Steinmann
,
P.
,
2006
, “
Objective Energy-Momentum Conserving Integration for the Constrained Dynamics of Geometrically Exact Beams
,”
Comput. Methods Appl. Mech. Eng.
,
195
, pp.
2313
2333
.10.1016/j.cma.2005.05.002
8.
Betsch
,
P.
, and
Sänger
,
N.
,
2009
, “
On the use of Geometrically Exact Shells in a Conserving Framework for Flexible Multibody Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
198
, pp.
1609
1630
.10.1016/j.cma.2009.01.016
9.
Romero
,
I.
, and
Armero
,
F.
,
2002
, “
An Objective Finite Element Approximation of the Kinematics of Geometrically Exact Rods and its use in the Formulation of an Energy Momentum Conserving Scheme in Dynamics
,”
Int. J. Numer. Methods Eng.
,
54
, pp.
1683
1716
.10.1002/nme.486
10.
Romero
,
I.
,
2004
, “
The Interpolation of Rotations and its Application to Finite Element Models of Geometrically Exact Rods
,”
Comput. Mech.
,
34
(
2
), pp.
121
133
.10.1007/s00466-004-0559-z
11.
Betsch
,
P.
,
2005
, “
The Discrete Null Space Method for the Energy Consistent Integration of Constrained Mechanical Systems. Part I. Holonomic Constraints
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
50-52
), pp.
5159
5190
.10.1016/j.cma.2005.01.004
12.
Betsch
,
P.
, and
Leyendecker
,
S.
,
2006
, “
The Discrete Null Space Method for the Energy Consistent Integration of Constrained Mechanical Systems. Part II: Multibody Dynamics
,”
Int. J. Numer. Methods Eng.
,
67
, pp.
499
552
.10.1002/nme.1639
13.
Leyendecker
,
S.
,
Betsch
,
P.
, and
Steinmann
,
P.
,
2008
, “
The Discrete Null Space Method for the Energy Consistent Integration of Constrained Mechanical Systems. Part III: Flexible Multibody Dynamics
,”
Multibody Syst. Dyn.
,
19
(
1-2
), pp.
45
72
.10.1007/s11044-007-9056-4
14.
Hegemier
,
G. A.
, and
Nair
,
S.
,
1977
, “
A Nonlinear Dynamical Theory for Heterogeneous, Anisotropic, Elastic Rods
,”
AIAA J.
,
15
(
1
), pp.
8
15
.10.2514/3.7296
15.
Hodges
,
D. H.
,
2003
, “
Geometrically Exact, Intrinsic Theory for Dynamics of Curved and Twisted Anisotropic Beams
,”
AIAA J.
,
41
(
6
), pp.
1131
1137
.10.2514/2.2054
16.
Hodges
,
D. H.
,
2009
, “
Erratum: Geometrically Exact, Intrinsic Theory for Dynamics of Curved and Twisted Anisotropic Beams
,”
AIAA J.
,
47
(
5
), pp.
1308
1309
.10.2514/1.40556
17.
Hodges
,
D. H.
,
1990
, “
A Mixed Variational Formulation based on Exact Intrinsic Equations for Dynamics of Moving Beams
,”
Int. J. Solids Struct
,
26
(
11
), pp.
1253
1273
.10.1016/0020-7683(90)90060-9
18.
Sotoudeh
,
Z.
, and
Hodges
,
D. H.
,
2011
, “
Modeling Beams with Various Boundary Conditions using Fully Intrinsic Equations
,”
J. Appl. Mech.
,
78
(
3
),
p. 031010
.10.1115/1.4003239
19.
Géradin
,
M.
, and
Cardona
,
A.
,
2001
,
Flexible Multibody System: A Finite Element Approach
,
John Wiley & Sons
,
New York
.
20.
Bauchau
,
O. A.
,
2011
,
Flexible Multibody Dynamics.
Springer
,
Dordrecht
.
21.
Neimark
,
J. I.
, and
Fufaev
,
N. A.
,
1972
,
Dynamics of Nonholonomic Systems
,
American Mathematical Society
,
Providence, Rhode Island
.
22.
Greenwood
,
D. T.
,
2003
,
Advanced Dynamics
,
Cambridge University Press
,
Cambridge, UK.
23.
Munthe-Kaas
,
H.
,
1995
, “
Lie-Butcher Theory for Runge-Kutta Methods
,”
BIT Numer. Math.
,
35
(
4
), pp.
572
587
.10.1007/BF01739828
24.
Munthe-Kaas
,
H.
,
1998
, “
Runge-Kutta Methods on Lie Groups
,”
BIT Numer. Math.
,
38
(
1
), pp.
92
111
.10.1007/BF02510919
25.
Munthe-Kaas
,
H.
, and
Owren
,
B.
,
1999
, “
Computations in a Free Lie Algebra
,”
Philos. Trans. R. Soc. London, Ser. A
,
357
(
1754
), pp.
957
981
.
26.
Crouch
,
P. E.
, and
Grossman
,
R.
,
1993
, “
Numerical Integration of Ordinary Differential Equations on Manifolds
,”
J. Nonlinear Sci.
,
3
(
1
), pp.
1
33
.10.1007/BF02429858
27.
Iserles
,
A.
, and
Nørsett
,
S. P.
,
1999
, “
On the Solution of Linear Differential Equations in Lie Groups
,”
Philos. Trans. R. Soc. London, Ser. A
,
357
(
1754
), pp.
983
1019
.
28.
Budd
,
C. J.
, and
Iserles
,
A.
,
1999
, “
Geometric Integration: Numerical Solution of Differential Equations on Manifolds
,”
Philos. Trans. R. Soc. London, Ser. A
,
357
(
1754
), pp.
945
956
.
29.
Celledoni
,
E.
, and
Owren
,
B.
,
2003
, “
Lie Group Methods for Rigid Body Dynamics and Time Integration on Manifolds
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
3-4
), pp.
421
438
.10.1016/S0045-7825(02)00520-0
30.
Kobilarov
,
K.
,
Crane
,
K.
, and
Desbrun
,
M.
,
2009
,, “
Lie Group Integrators for Animation and Control of Vehicles
,”
ACM Trans. Graphics
,
28
(
2
), pp.
39
61
.
31.
Brüls
,
O.
, and
Cardona
,
A.
,
2010
, “
On the use of Lie Group Time Integrators in Multibody Dynamics
,”
J. Comput. Nonlinear Dyn.
,
5
(
3
), p.
031002
.10.1115/1.4001370
32.
Brüls
,
O.
,
Cardona
,
A.
, and
Arnold
,
M.
,
2012
, “
Lie Group Generalized-Alpha Time Integration of Constrained Flexible Multibody Systems
,”
Mech. Mach. Theory
,
48
, pp.
121
137
.10.1016/j.mechmachtheory.2011.07.017
33.
Bauchau
,
O. A.
, and
Trainelli
,
L.
,
2003
, “
The Vectorial Parameterization of Rotation
,”
Nonlinear Dyn.
,
32
(
1
), pp.
71
92
.10.1023/A:1024265401576
34.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
,
1986
, “
A Three Dimensional Finite Strain Rod Model. Part II: Computational Aspects
,”
Comput. Methods Appl. Mech. Eng.
,
58
(
1
), pp.
79
116
.10.1016/0045-7825(86)90079-4
35.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
,
1988
, “
On the Dynamics in Space of Rods Undergoing Large Motions - A Geometrically Exact Approach
,”
Comput. Methods Appl. Mech. Eng.
,
66
(
1
), pp.
125
161
.10.1016/0045-7825(88)90073-4
36.
Simo
,
J. C.
, and
Wong
,
K.
,
1991
, “
Unconditionally Stable Algorithms for Rigid Body Dynamics that Exactly Preserve Energy and Momentum
,”
Int. J. Numer. Methods Eng.
,
31
, pp.
19
52
.10.1002/nme.1620310103
37.
Bauchau
,
O. A.
,
Damilano
,
G.
, and
Theron
,
N. J.
,
1995
, “
Numerical Integration of Nonlinear Elastic Multi-Body Systems
,”
Int. J. Numer. Methods Eng.
,
38
(
16
), pp.
2727
2751
.10.1002/nme.1620381605
38.
Hughes
,
T. J. R.
,
1992
,
The Finite Element Method
,
Prentice Hall, Inc.
,
Englewood Cliffs, NJ.
39.
Bathe
,
K. J.
,
1996
,
Finite Element Procedures
,
Prentice Hall, Inc.
,
Englewood Cliffs, NJ.
40.
Hughes
,
T. J. R.
,
1983
, “
Analysis of Transient Algorithms with Particular Reference to Stability Behavior
,”
Computational Methods for Transient Analysis
,
T.
Belytschko
and
T. J. R.
Hughes
, eds.,
North-Holland, Amsterdam
, pp.
67
155
.
41.
Bauchau
,
O. A.
, and
Theron
,
N. J.
,
1996
, “
Energy Decaying Scheme for Non-Linear Beam Models
,”
Comput. Methods Appl. Mech. Eng.
,
134
(
1-2
), pp.
37
56
.10.1016/0045-7825(96)01030-4
42.
Bauchau
,
O. A.
, and
Joo
,
T.
,
1999
, “
Computational Schemes for Nonlinear Elasto-Dynamics
,”
Int. J. Numer. Methods Eng.
,
45
(
6
), pp.
693
719
.10.1002/(SICI)1097-0207(19990630)45:6<693::AID-NME596>3.0.CO;2-D
43.
Bauchau
,
O. A.
, and
Theron
,
N. J.
,
1996
, “
Energy Decaying Schemes for Nonlinear Elastic Multi-Body Systems
,”
Comput. Struct.
,
59
(
2
), pp.
317
331
.10.1016/0045-7949(95)00250-2
44.
Bauchau
,
O. A.
,
1998
, “
Computational Schemes for Flexible, Nonlinear Multi-Body Systems
,”
Multibody Syst. Dyn.
,
2
(
2
), pp.
169
225
.10.1023/A:1009710818135
45.
Bauchau
,
O. A.
,
Bottasso
,
C. L.
, and
Trainelli
,
L.
,
2003
, “
Robust Integration Schemes for Flexible Multibody Systems
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
3–4
), pp.
395
420
.10.1016/S0045-7825(02)00519-4
46.
Bauchau
,
O. A.
,
Choi
,
J. Y.
, and
Bottasso
,
C. L.
,
2002
, “
On the Modeling of Shells in Multibody Dynamics
,”
Multibody Syst. Dyn.
,
8
(
4
), pp.
459
489
.10.1023/A:1021109015553
47.
Bauchau
,
O. A.
,
Choi
,
J. Y.
, and
Bottasso
,
C. L.
,
2002
, “
Time Integrators for Shells in Multibody Dynamics
,”
Int. J. Comput. Struct.
,
80
(
9-10
), pp.
871
889
.10.1016/S0045-7949(02)00053-6
48.
Bottasso
,
C. L.
, and
Borri
,
M.
,
1997
, “
Energy Preserving/Decaying Schemes for Non-Linear Beam Dynamics using the Helicoidal Approximation
,”
Comput. Methods Appl. Mech. Eng.
,
143
, pp.
393
415
.10.1016/S0045-7825(96)01161-9
49.
Bottasso
,
C. L.
, and
Borri
,
M.
,
1998
, “
Integrating Finite Rotations
,”
Comput. Methods Appl. Mech. Eng.
,
164
, pp.
307
331
.10.1016/S0045-7825(98)00031-0
50.
Bottasso
,
C. L.
,
Borri
,
M.
, and
Trainelli
,
L.
,
2001
, “
Integration of Elastic Multibody Systems by Invariant Conserving/Dissipating Algorithms. Part I: Formulation
,”
Comput. Methods Appl. Mech. Eng.
,
190
, pp.
3669
3699
.10.1016/S0045-7825(00)00285-1
51.
Bottasso
,
C. L.
,
Borri
,
M.
, and
Trainelli
,
L.
,
2001
, “
Integration of Elastic Multibody Systems by Invariant Conserving/Dissipating Algorithms. Part II: Numerical Schemes and Applications
,”
Comput. Methods Appl. Mech. Eng.
,
190
, pp.
3701
3733
.10.1016/S0045-7825(00)00285-1
52.
Bottasso
,
C. L.
,
1997
, “
A New Look at Finite Elements in Time: A Variational Interpretation of Runge-Kutta Methods
,”
Appl. Numer. Math.
,
25
(
4
), pp.
355
368
.10.1016/S0168-9274(97)00072-X
53.
Bottasso
,
C. L.
, and
Trainelli
,
L.
,
2004
, “
An Attempt at the Classification of Energy Decaying Schemes for Structural and Multibody Dynamics
,”
Multibody Syst. Dyn.
,
12
, pp.
173
185
.10.1023/B:MUBO.0000044418.23751.fe
54.
Hilber
,
H. M.
,
Hughes
,
T. J. R.
, and
Taylor
,
R. L.
,
1977
, “
Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics
,”
Earthquake Eng. Struct. Dyn.
,
5
, pp.
283
292
.10.1002/eqe.4290050306
55.
Chung
,
J.
, and
Hulbert
,
G. M.
,
1993
, “
A Time Integration Algorithm for Structural Dynamics with Improved Numerical Dissipation: The Generalized-α Method
,”
J. Appl. Mech.
,
60
, pp.
371
375
.10.1115/1.2900803
56.
Cardona
,
A.
, and
Géradin
,
M.
,
1989
, “
Time Integration of the Equations of Motion in Mechanism Analysis
,”
Comput. Struct.
,
33
(
3
), pp.
801
820
.10.1016/0045-7949(89)90255-1
57.
Arnold
,
M.
, and
Brüls
,
O.
,
2007
, “
Convergence of the Generalized-α Scheme for Constrained Mechanical Systems
,”
Multibody Syst. Dyn.
,
18
(
2
), pp.
185
202
.10.1007/s11044-007-9084-0
58.
Bauchau
,
O. A.
, and
Choi
,
J. Y.
,
2003
, “
The Vector Parameterization of Motion
,”
Nonlinear Dyn.
,
33
(
2
), pp.
165
188
.10.1023/A:1026008414065
You do not currently have access to this content.