In the present paper, we consider a three-link underactuated manipulator, the first joint of which is active and the second and third joints of which exhibit passive motion, on a plane inclined at slight angle from horizontal the plane. We analytically investigate changes in the stability of equilibrium points of the free links connected to the passive joints using high-frequency horizontal excitation of the first link. We derive autonomous averaged equations from the dimensionless equations of motion using the method of multiple scales. We clarify that the two free links can be swung up through pitchfork bifurcations and stabilized at some configurations by producing nontrivial and stable equilibrium points due to the high-frequency excitation. Furthermore, it is experimentally verified that increasing the excitation frequency multiplies stable and nontrivial equilibrium points.

References

1.
Mukherjee
,
R.
, and
Chen
,
D.
,
1993
, “
Control of Free-Flying Underactuated Space Manipulator to Equilibrium Manifolds
,”
IEEE Trans. Rob. Autom.
,
9
(
5
), pp.
561
570
.10.1109/70.258049
2.
Tortopidis
,
I.
, and
Papadopoulos
,
E.
,
2007
, “
On Point-To-Point Motion Planning for Underactuated Space Manipulator Systems
,”
Rob. Auton. Syst.
,
55
, pp.
122
131
.10.1016/j.robot.2006.07.003
3.
Papadopoulos
,
E.
, and
Dubowsky
,
S.
,
1991
, “
Failure Recovery Control For Space Robotic Systems
,”
Proceedings of the American Control Conference
,
2
, pp.
1485
1490
. 10.1115/1.2175089
4.
Roy
,
B.
, and
Asada
,
H.
,
2009
, “
Nonlinear Feedback Control of a Gravity-Assisted Underactuated Manipulator With Application to Aircraft Assembly
,”
IEEE Trans. Rob.
,
25
(
5
), pp.
1125
1133
.10.1109/TRO.2009.2025067
5.
Zhao
,
T. S.
, and
Dai
,
J. S.
,
2003
, “
Dynamics and Coupling Actuation of Elastic Underactuated Manipulators
,”
J. Rob. Syst.
,
20
(
3
), pp.
135
146
.10.1002/rob.10075
6.
Arai
,
H.
, and
Tachi
,
S.
,
1991
, “
Position Control of a Manipulators With Passive Joints Using Dynamic Coupling
,”
IEEE Trans. Rob. Autom.
,
7
(
4
), pp.
528
534
.10.1109/70.86082
7.
Gilbert
,
J. M.
,
2007
, “
Gyrobot: Control of Multiple Degree of Freedom Underactuated Mechanisms Using a Gyrating Link and Cyclic Braking
,”
IEEE Trans. Rob.
,
4
, pp.
822
827
. 10.1109/TRO.2007.900632
8.
Arai
,
H.
,
Tanie
,
K.
, and
Shiroma
,
N.
,
1998
, “
Nonholonomic Control of a Three-DOF Planar Underactuated Manipulator
,”
IEEE Trans. Rob. Autom.
,
14
(
2
), pp.
681
695
.10.1109/70.720345
9.
Yu
,
K. H.
,
Shito
,
Y.
, and
Inooka
,
H.
,
1998
, “Position Control of an Underactuated Manipulator Using Joint Friction,”
Int. J. Nonlinear Mech.
,
33
(
4
), pp.
607
614
.10.1016/S0020-7462(97)00035-8
10.
Agrawal
,
S. K.
, and
Sangwan
,
V.
,
2008
, “Differentially Flat Designs of Underactuated Open-Chain Planar Robots,”
IEEE Trans. Rob.
,
24
(
6
), pp.
1445
1451
.10.1109/TRO.2008.2006243
11.
Mahindrakar
,
A. D.
,
Banavar
,
R. N.
, and
Reyhanoglu
,
M.
,
2005
, “
Controllability and Point-To-Point Control of 3-DOF Planar Horizontal Underactuated Manipulators
,”
Int. J. Control
,
78
(
1
), pp.
1
13
.10.1080/00207170412331317422
12.
Xin
,
X.
, and
Kaneda
,
M.
,
2007
, “
Swing-Up Control for a 3-DOF Gymnastic Robot With Passive First Joint: Design and Analysis
,”
IEEE Trans. Rob.
,
23
(
6
), pp.
1277
1285
.10.1109/TRO.2007.909805
13.
Hong
,
K. S.
,
2002
, “
An Open-Loop Control for Underactuated Manipulators Using Oscillatory Input: Steering Capability of an Unactuated Joint
,”
IEEE Trans. Control Syst. Technol.
,
10
(
3
), pp.
469
480
.10.1109/87.998037
14.
Yabuno
,
H.
,
Goto
,
K.
, and
Aoshima
,
N.
,
2004
, “
Swing-Up and Stabilization of an Underactuated Manipulator Without State Feedback of Free Joint
,”
IEEE Trans. Rob. Autom.
,
20
(
2
), pp.
359
365
.10.1109/TRA.2004.824692
15.
Yabuno
,
H.
, and
Hattori
,
M.
,
2008
, “
Reachable Area of an Underactuated Space Manipulator Subjected to Simple Spinning (Application of Bifurcation Control Under High-Frequency Excitation)
,”
Nonlinear Dyn.
,
51
, pp.
345
353
. 10.1007/s11071-007-9215-4
16.
Kapitza
,
P. L.
,
1965
, “
Dynamical Stability of a Pendulum When its Point of Suspension Vibrates, and Pendulum With a Vibrating Suspension
,”
Collected Papers of P. L. Kapitza
,
D. T.
Haar
, ed.,
Pergamon Press
,
London
, Vol.
2
, pp.
714
737
.
17.
Stephenson
,
A.
,
1908
, “
On a New Type of Dynamical Stability
,”
Mem. Proc. Manch. Lit. Phil. Sci.
,
52
, pp.
1
10
.
18.
Bellman
,
R. E.
,
Bentsman
,
J.
, and
Meerkov
,
S. M.
,
1986
, “
Vibration Control of Nonlinear Systems: Vibration Stabilizability
,”
IEEE Trans. Autom. Control
,
AC-31
(
8
), pp.
710
716
. 10.1109/TAC.1986.1104384
19.
Weibel
,
S. P.
, and
Baillieul
,
J.
,
1998
, “
Open-Loop Oscillatory Stabilization of an n-Pendulum
,”
Int. J. Control
,
16
(
11
), pp.
931
957
. 10.1080/002071798221641
20.
Schmitt
,
J. M.
, and
Bayly
,
P. V.
,
1998
, “
Bifurcations in the Mean Angle of a Horizontally Shaken Pendulum: Analysis and Experiment
,”
Nonlinear Dyn.
,
15
, pp.
1
14
.10.1023/A:1008279910762
21.
Yabuno
,
H.
,
Miura
,
M.
, and
Aoshima
,
N.
,
2004
, “
Bifurcation in an Inverted Pendulum With Tilted High Frequency Excitation: Analytical and Experimental Investigations on the Symmetry-Breaking of the Bifurcation
,”
J. Sound Vib.
,
273
, pp.
493
513
.10.1016/S0022-460X(03)00507-8
22.
Yabuno
,
H.
,
Matsuda
,
T.
, and
Aoshima
,
N.
,
2004
, “
Reachable and Stabilizable Area of Underactuated Manipulator Without State Feedback Control
,”
IEEE Trans. Rob. Autom.
,
10
(
4
), pp.
397
403
. 10.1109/TMECH.2005.852450
You do not currently have access to this content.