This paper reveals the dynamical behaviors of a bidirectional neural network consisting of four neurons with delayed nearest-neighbor and shortcut connections. The criterion of the global asymptotic stability of the trivial equilibrium of the network is derived by means of a suitable Lyapunov functional. The local stability of the trivial equilibrium is investigated by analyzing the distributions of roots of the associated characteristic equation. The sufficient conditions for the existence of nontrivial synchronous and asynchronous equilibria and periodic oscillations arising from codimension one bifurcations are obtained. Multistability near the codimension two bifurcation points is presented. Numerical simulations are given to validate the theoretical analysis.

1.
Marcus
,
C. M.
, and
Westervelt
,
R. M.
, 1989, “
Stability of Analog Neural Networks With Delay
,”
Phys. Rev. A
1050-2947,
39
, pp.
347
359
.
2.
Campbell
,
S. A.
,
Ncube
,
I.
, and
Wu
,
J.
, 2006, “
Multistability and Stable Asynchronous Periodic Oscillations in a Multiple-Delayed Neural System
,”
Physica D
0167-2789,
214
, pp.
101
119
.
3.
Xu
,
X.
, 2008, “
Complicated Dynamics of a Ring Neural Network With Time Delays
,”
J. Phys. A
0305-4470,
41
, p.
035102
.
4.
Liao
,
X. F.
,
Wong
,
K. W.
, and
Wu
,
Z. F.
, 2003, “
Asymptotic Stability Criteria for a Two-Neuron Network With Different Time Delays
,”
IEEE Trans. Neural Netw.
1045-9227,
14
, pp.
222
227
.
5.
Gopalsamy
,
K.
, and
Leung
,
I. K.
, 1997, “
Convergence under Dynamical Thresholds With Delays
,”
IEEE Trans. Neural Netw.
1045-9227,
8
, pp.
341
348
.
6.
Yuan
,
Y.
, and
Campbell
,
S. A.
, 2004, “
Stability and Synchronization of a Ring of Identical Cells With Delayed Coupling
,”
J. Dyn. Differ. Equ.
1040-7294,
16
, pp.
709
744
.
7.
Campbell
,
S. A.
,
Yuan
,
Y.
, and
Bungay
,
S. D.
, 2005, “
Equivariant Hopf Bifurcation in a Ring of Identical Cells With Delayed Coupling
,”
Nonlinearity
0951-7715,
18
, pp.
2827
2846
.
8.
Newman
,
M. E. J.
, 2003, “
The Structure and Function of Complex Networks
,”
SIAM Rev.
0036-1445,
45
, pp.
167
256
.
9.
Mao
,
X. C.
, and
Hu
,
H. Y.
, 2009, “
Hopf Bifurcation Analysis of a Four-Neuron Network With Multiple Time Delays
,”
Nonlinear Dyn.
0924-090X,
55
, pp.
95
112
.
10.
Xu
,
X.
, and
Wang
,
Z. H.
, 2009, “
Effects of Small World Connection on the Dynamics of a Delayed Ring Network
,”
Nonlinear Dyn.
0924-090X,
56
(
1-2
), pp.
127
144
.
11.
Yuan
,
Y.
, 2007, “
Dynamics in a Delayed-Neural Network
,”
Chaos, Solitons Fractals
0960-0779,
33
, pp.
443
454
.
12.
Hu
,
H. Y.
, and
Wang
,
Z. H.
, 2002,
Dynamics of Controlled Mechanical Systems With Delayed Feedback
,
Springer-Verlag
,
Heidelberg
.
13.
Wang
,
H. L.
, and
Hu
,
H. Y.
, 2005, “
Bifurcation Analysis of a Delayed Dynamic System Via Method of Multiple Scales and Shooting Technique
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
15
, pp.
425
450
.
14.
Qesmi
,
R.
,
Ait
,
B. M.
, and
Hbid
,
M. L.
, 2007, “
Symbolic Computation for Center Manifolds and Normal Forms of Bogdanov Bifurcation in Retarded Functional Differential Equations
,”
Nonlinear Anal. Theory, Methods Appl.
0362-546X,
66
, pp.
2833
2851
.
15.
Guo
,
S. J.
,
Chen
,
Y. M.
, and
Wu
,
J.
, 2008, “
Two-Parameter Bifurcations in a Network of Two Neurons With Multiple Delays
,”
J. Differ. Equations
0022-0396,
244
, pp.
444
486
.
16.
Guckenheimer
,
J.
, and
Holmes
,
P.
, 1983,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
,
Springer-Verlag
,
New York
.
You do not currently have access to this content.