Abstract
The objective of this work is to solve the fractional Allen–Cahn equations (ACEs) using a method that combines the modified Rubin–Graves linearization scheme and the implicit higher-order Adams–Moulton (AM) scheme to resolve the difficulties induced by the fractional derivatives and the nonlinearity of the given fractional Allen–Cahn equations. The fractional derivative is taken into Caputo's sense. Additionally, the second-order central finite difference (FD) scheme is used for spatial discretization. The convergence of the proposed method is theoretically and numerically discussed. Its efficiency is verified via several numerical experiments and compared with that of existing methods.
Issue Section:
Research Papers
References
1.
Benes
, M.
, Chalupecky
, V.
, and Mikula
, K.
, 2004
, “Geometrical Image Segmentation by the Allen–Cahn Equation
,” Appl. Numer. Math.
, 51
(2–3
), pp. 187
–205
.10.1016/j.apnum.2004.05.0012.
Chen
, L.
, 2002
, “Phase-Field Models for Microstructure Evolution
,” Annu. Rev. Mater. Res.
, 32
(1
), pp. 113
–140
.10.1146/annurev.matsci.32.112001.1320413.
Liu
, Z.
, and Li
, X.
, 2019
, “Efficient Modified Techniques of Invariant Energy Quadratization Approach for Gradient Flows
,” Appl. Math. Lett.
, 98
, pp. 206
–214
.10.1016/j.aml.2019.06.0064.
Ahmad
, B.
, Ntouyas
, S.
, and Alsaedi
, A.
, 2013
, “A Study of Nonlinear Fractional Differential Equations of Arbitrary Order With Riemann–Liouville Type Multistrip Boundary Conditions
,” Math. Probl. Eng.
, 2013
, p. 320415
.10.1155/2013/3204155.
Naik
, P.
, Zu
, J.
, and Owolabi
, K.
, 2020
, “Global Dynamics of a Fractional Order Model for the Transmission of HIV Epidemic With Optimal Control
,” Chaos, Solitons Fractals
, 138
, p. 109826
.10.1016/j.chaos.2020.1098266.
Asl
, M.
, Javidi
, M.
, and Yan
, Y.
, 2021
, “High Order Algorithms for Numerical Solution of Fractional Differential Equations
,” Adv. Differ. Equations
, 2021
, pp. 1–23.10.1186/s13662-021-03273-47.
Gutiérrez
, R.
, Rosário
, J.
, and Machado
, J.
, 2010
, “Fractional Order Calculus: Basic Concepts and Engineering Applications
,” Math. Probl. Eng.
, 2010
, p. 375858
.10.1155/2010/3758588.
Albadarneh
, R.
, Zerqat
, M.
, and Batiha
, I.
, 2016
, “Numerical Solutions for Linear and Non-Linear Fractional Differential Equations
,” Int. J. Pure Appl. Math.
, 106
, pp. 859
–871
.10.12732/ijpam.v106i3.129.
Bu
, S.
, 2021
, “A Collocation Methods Based on the Quadratic Quadrature Technique for Fractional Differential Equation
,” AIMS Math.
, 7
(1
), pp. 804
–820
.10.3934/math.202204810.
Bu
, S.
, and Jeon
, Y.
, 2024
, “Higher-Order Predictor-Corrector Methods for Fractional Benjamin-Bona-Mahony-Burgers' Equations
,” J. Appl. Math. Comput.
, 71
, pp. 1
–30
.10.1007/s12190-024-02223-z11.
Cao
, J.
, and Xu
, C.
, 2013
, “A High Order Schema for the Numerical Solution of the Fractional Ordinary Differential Equation
,” J. Comput. Phys.
, 238
, pp. 154
–168
.10.1016/j.jcp.2012.12.01312.
Deng
, W.
, 2010
, “Smoothness and Stability of the Solutions for Nonlinear Fractional Differential Equations
,” Nonlinear Anal.: Theory, Methods Appl.
, 72
(3–4
), pp. 1768
–1777
.10.1016/j.na.2009.09.01813.
Deng
, W.
, Du
, S.
, and Wu
, Y.
, 2013
, “High Order Finite Difference WENO Schemes for Fractional Differential Equations
,” Appl. Math. Lett.
, 26
(3
), pp. 362
–366
.10.1016/j.aml.2012.10.00514.
Diethelm
, K.
, and Freed
, A.
, 1999
, “The FracPECE Subroutine for the Numerical Solution of Differential Equations of Fractional Order
,” Forschung und wissenschaftliches Rechnen: Beiträge zum Heinz-Billing-Preis 1998
, S.
Heinzel
, and T.
Plesser
, eds., Gesellschaft für wissenschaftliche Datenverarbeitung
, Gottingen, Germany
, pp. 57
–71
.15.
Diethelm
, K.
, Ford
, N.
, and Freed
, A.
, 2002
, “A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations
,” Nonlinear Dyn.
, 29
(1–4
), pp. 3
–22
.10.1023/A:101659221934116.
Ford
, N.
, Morgado
, M.
, and Rebelo
, M.
, 2013
, “Nonpolynomial Collocation Approximation of Solutions to Fractional Differential Equations
,” Fract. Calc. Appl. Anal.
, 16
(4
), pp. 874
–891
.10.2478/s13540-013-0054-317.
Jeon
, Y.
, and Bu
, S.
, 2024
, “Improved Numerical Approach for Bagley–Torvik Equation Using Fractional Integral Formula and Adams–Moulton Method
,” ASME J. Comput. Nonlinear Dyn.
, 19
(5
), p. 051005
.10.1115/1.406501218.
Lubich
, C.
, 1986
, “Discretized Fractional Calculus
,” SIAM J. Math. Anal.
, 17
(3
), pp. 704
–719
.10.1137/051705019.
Li
, C.
, Chen
, A.
, and Ye
, J.
, 2011
, “Numerical Approaches to Fractional Calculus and Fractional Ordinary Differential Equation
,” J. Comput. Phys.
, 230
(9
), pp. 3352
–3368
.10.1016/j.jcp.2011.01.03020.
Song
, F.
, Xu
, C.
, and Karniadakis
, G.
, 2016
, “A Fractional Phase-Field Model for Two-Phase Flows With Tunable Sharpness: Algorithms and Simulations
,” Comput. Methods Appl. Mech. Eng.
, 305
, pp. 376
–404
.10.1016/j.cma.2016.03.01821.
Liao
, H.
, Tang
, T.
, and Zhou
, T.
, 2020
, “A Second-Order and Nonuniform Time-Stepping Maximum-Principle Preserving Scheme for Time-Fractional Allen–Cahn Equations
,” J. Comput. Phys.
, 414
, p. 109473
.10.1016/j.jcp.2020.10947322.
Tang
, T.
, Yu
, H.
, and Zhou
, T.
, 2019
, “On Energy Dissipation Theory and Numerical Stability for Time-Fractional Phase Field Equations
,” SIAM J. Sci. Comput.
, 41
(6
), pp. A3757
–A3778
.10.1137/18M120356023.
Zhai
, S.
, Ye
, C.
, and Weng
, Z.
, 2020
, “A Fast and Efficient Numerical Algorithm for Fractional Allen–Cahn With Precise Nonlocal Mass Conservation
,” Appl. Math. Lett.
, 103
, p. 106190
.10.1016/j.aml.2019.10619024.
Ji
, B.
, Liao
, H.
, and Zhang
, L.
, 2020
, “Simple Maximum Principle Preserving Time-Stepping Methods for Time-Fractional Allen–Cahn Equation
,” Adv. Comput. Math.
, 46
(2
), p. 37
.10.1007/s10444-020-09782-225.
Hou
, D.
, Zhu
, H.
, and Xu
, C.
, 2021
, “Highly Efficient Schemes for Time-Fractional Allen–Cahn Equation Using Extended SAV Approach
,” Numer. Algorithms
, 88
(3
), pp. 1077
–1108
.10.1007/s11075-021-01068-y26.
Quan
, C.
, Tang
, T.
, and Yang
, J.
, 2020
, “Numerical Energy Dissipation for Time-Fractional Phase-Field Equations
,” J. Comput. Math.,
43(3), pp. 515
–539
.10.4208/jcm.2311-m2021-019927.
Fatima
, M.
, Agarwal
, R.
, Abbas
, M.
, Mohammed
, P.
, Shafiq
, M.
, and Chorfi
, N.
, 2024
, “Extension of Cubic B-Spline for Solving the Time-Fractional Allen–Cahn Equation in the Context of Mathematical Physics
,” Computation
, 12
(3
), p. 51
.10.3390/computation1203005128.
Choudhary
, R.
, and Kumar
, D.
, 2024
, “Collocation-Based Numerical Simulation of Fractional Order Allen–Cahn Equation
,” J. Math. Chem.
, 62
(1
), pp. 145
–168
.10.1007/s10910-023-01525-029.
Jeon
, Y.
, and Bu
, S.
, 2024
, “Numerical Approach for Time-Fractional Burgers' Equation Via a Combination of Adams–Moulton and Linearized Technique
,” J. Math. Chem.
, 62
(5
), pp. 1189
–1208
.10.1007/s10910-024-01589-630.
Garrappa
, R.
, 2018
, “Numerical Solution of Fractional Differential Equations: A Survey and a Software Tutorial
,” Mathematics
, 6
(2
), p. 16
.10.3390/math602001631.
Du
, Q.
, Yang
, J.
, and Zhou
, Z.
, 2020
, “Time-Fractional Allen–Cahn Equations: Analysis and Numerical Methods
,” J. Sci. Comput.
, 85
(2
), p. 42
.10.1007/s10915-020-01351-532.
Diethelm
, K.
, Ford
, N.
, and Freed
, A.
, 2004
, “Detailed Error Analysis for a Fractional Adams Method
,” Numer. Algorithms
, 36
(1
), pp. 31
–52
.10.1023/B:NUMA.0000027736.85078.be33.
Rubin
, S.
, and Graves
, R.
, Jr., 1975
, “Viscous Flow Solutions With a Cubic Spline Approximation
,” Comput. Fluids
, 3
(1
), pp. 1
–36
.10.1016/0045-7930(75)90006-734.
Fornberg
, B.
, 1996
, A Practical Guide to Pseudospectral Methods
, Cambridge University Press
, Cambridge, UK
.35.
Khalid
, N.
, Abbas
, M.
, Iqbal
, M.
, and Baleanu
, D.
, 2020
, “A Numerical Investigation of Caputo Time Fractional Allen–Cahn Equation Using Redefined Cubic B-Spline Functions
,” Adv. Differ. Equations
, 2020
(1
), p. 158
.10.1186/s13662-020-02616-xCopyright © 2025 by ASME
You do not currently have access to this content.