Abstract

The objective of this work is to solve the fractional Allen–Cahn equations (ACEs) using a method that combines the modified Rubin–Graves linearization scheme and the implicit higher-order Adams–Moulton (AM) scheme to resolve the difficulties induced by the fractional derivatives and the nonlinearity of the given fractional Allen–Cahn equations. The fractional derivative is taken into Caputo's sense. Additionally, the second-order central finite difference (FD) scheme is used for spatial discretization. The convergence of the proposed method is theoretically and numerically discussed. Its efficiency is verified via several numerical experiments and compared with that of existing methods.

References

1.
Benes
,
M.
,
Chalupecky
,
V.
, and
Mikula
,
K.
,
2004
, “
Geometrical Image Segmentation by the Allen–Cahn Equation
,”
Appl. Numer. Math.
,
51
(
2–3
), pp.
187
205
.10.1016/j.apnum.2004.05.001
2.
Chen
,
L.
,
2002
, “
Phase-Field Models for Microstructure Evolution
,”
Annu. Rev. Mater. Res.
,
32
(
1
), pp.
113
140
.10.1146/annurev.matsci.32.112001.132041
3.
Liu
,
Z.
, and
Li
,
X.
,
2019
, “
Efficient Modified Techniques of Invariant Energy Quadratization Approach for Gradient Flows
,”
Appl. Math. Lett.
,
98
, pp.
206
214
.10.1016/j.aml.2019.06.006
4.
Ahmad
,
B.
,
Ntouyas
,
S.
, and
Alsaedi
,
A.
,
2013
, “
A Study of Nonlinear Fractional Differential Equations of Arbitrary Order With Riemann–Liouville Type Multistrip Boundary Conditions
,”
Math. Probl. Eng.
,
2013
, p.
320415
.10.1155/2013/320415
5.
Naik
,
P.
,
Zu
,
J.
, and
Owolabi
,
K.
,
2020
, “
Global Dynamics of a Fractional Order Model for the Transmission of HIV Epidemic With Optimal Control
,”
Chaos, Solitons Fractals
,
138
, p.
109826
.10.1016/j.chaos.2020.109826
6.
Asl
,
M.
,
Javidi
,
M.
, and
Yan
,
Y.
,
2021
, “
High Order Algorithms for Numerical Solution of Fractional Differential Equations
,”
Adv. Differ. Equations
,
2021
, pp. 1–23.10.1186/s13662-021-03273-4
7.
Gutiérrez
,
R.
,
Rosário
,
J.
, and
Machado
,
J.
,
2010
, “
Fractional Order Calculus: Basic Concepts and Engineering Applications
,”
Math. Probl. Eng.
,
2010
, p.
375858
.10.1155/2010/375858
8.
Albadarneh
,
R.
,
Zerqat
,
M.
, and
Batiha
,
I.
,
2016
, “
Numerical Solutions for Linear and Non-Linear Fractional Differential Equations
,”
Int. J. Pure Appl. Math.
,
106
, pp.
859
871
.10.12732/ijpam.v106i3.12
9.
Bu
,
S.
,
2021
, “
A Collocation Methods Based on the Quadratic Quadrature Technique for Fractional Differential Equation
,”
AIMS Math.
,
7
(
1
), pp.
804
820
.10.3934/math.2022048
10.
Bu
,
S.
, and
Jeon
,
Y.
,
2024
, “
Higher-Order Predictor-Corrector Methods for Fractional Benjamin-Bona-Mahony-Burgers' Equations
,”
J. Appl. Math. Comput.
,
71
, pp.
1
30
.10.1007/s12190-024-02223-z
11.
Cao
,
J.
, and
Xu
,
C.
,
2013
, “
A High Order Schema for the Numerical Solution of the Fractional Ordinary Differential Equation
,”
J. Comput. Phys.
,
238
, pp.
154
168
.10.1016/j.jcp.2012.12.013
12.
Deng
,
W.
,
2010
, “
Smoothness and Stability of the Solutions for Nonlinear Fractional Differential Equations
,”
Nonlinear Anal.: Theory, Methods Appl.
,
72
(
3–4
), pp.
1768
1777
.10.1016/j.na.2009.09.018
13.
Deng
,
W.
,
Du
,
S.
, and
Wu
,
Y.
,
2013
, “
High Order Finite Difference WENO Schemes for Fractional Differential Equations
,”
Appl. Math. Lett.
,
26
(
3
), pp.
362
366
.10.1016/j.aml.2012.10.005
14.
Diethelm
,
K.
, and
Freed
,
A.
,
1999
, “
The FracPECE Subroutine for the Numerical Solution of Differential Equations of Fractional Order
,”
Forschung und wissenschaftliches Rechnen: Beiträge zum Heinz-Billing-Preis 1998
,
S.
Heinzel
, and
T.
Plesser
, eds.,
Gesellschaft für wissenschaftliche Datenverarbeitung
,
Gottingen, Germany
, pp.
57
71
.
15.
Diethelm
,
K.
,
Ford
,
N.
, and
Freed
,
A.
,
2002
, “
A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations
,”
Nonlinear Dyn.
,
29
(
1–4
), pp.
3
22
.10.1023/A:1016592219341
16.
Ford
,
N.
,
Morgado
,
M.
, and
Rebelo
,
M.
,
2013
, “
Nonpolynomial Collocation Approximation of Solutions to Fractional Differential Equations
,”
Fract. Calc. Appl. Anal.
,
16
(
4
), pp.
874
891
.10.2478/s13540-013-0054-3
17.
Jeon
,
Y.
, and
Bu
,
S.
,
2024
, “
Improved Numerical Approach for Bagley–Torvik Equation Using Fractional Integral Formula and Adams–Moulton Method
,”
ASME J. Comput. Nonlinear Dyn.
,
19
(
5
), p.
051005
.10.1115/1.4065012
18.
Lubich
,
C.
,
1986
, “
Discretized Fractional Calculus
,”
SIAM J. Math. Anal.
,
17
(
3
), pp.
704
719
.10.1137/0517050
19.
Li
,
C.
,
Chen
,
A.
, and
Ye
,
J.
,
2011
, “
Numerical Approaches to Fractional Calculus and Fractional Ordinary Differential Equation
,”
J. Comput. Phys.
,
230
(
9
), pp.
3352
3368
.10.1016/j.jcp.2011.01.030
20.
Song
,
F.
,
Xu
,
C.
, and
Karniadakis
,
G.
,
2016
, “
A Fractional Phase-Field Model for Two-Phase Flows With Tunable Sharpness: Algorithms and Simulations
,”
Comput. Methods Appl. Mech. Eng.
,
305
, pp.
376
404
.10.1016/j.cma.2016.03.018
21.
Liao
,
H.
,
Tang
,
T.
, and
Zhou
,
T.
,
2020
, “
A Second-Order and Nonuniform Time-Stepping Maximum-Principle Preserving Scheme for Time-Fractional Allen–Cahn Equations
,”
J. Comput. Phys.
,
414
, p.
109473
.10.1016/j.jcp.2020.109473
22.
Tang
,
T.
,
Yu
,
H.
, and
Zhou
,
T.
,
2019
, “
On Energy Dissipation Theory and Numerical Stability for Time-Fractional Phase Field Equations
,”
SIAM J. Sci. Comput.
,
41
(
6
), pp.
A3757
A3778
.10.1137/18M1203560
23.
Zhai
,
S.
,
Ye
,
C.
, and
Weng
,
Z.
,
2020
, “
A Fast and Efficient Numerical Algorithm for Fractional Allen–Cahn With Precise Nonlocal Mass Conservation
,”
Appl. Math. Lett.
,
103
, p.
106190
.10.1016/j.aml.2019.106190
24.
Ji
,
B.
,
Liao
,
H.
, and
Zhang
,
L.
,
2020
, “
Simple Maximum Principle Preserving Time-Stepping Methods for Time-Fractional Allen–Cahn Equation
,”
Adv. Comput. Math.
,
46
(
2
), p.
37
.10.1007/s10444-020-09782-2
25.
Hou
,
D.
,
Zhu
,
H.
, and
Xu
,
C.
,
2021
, “
Highly Efficient Schemes for Time-Fractional Allen–Cahn Equation Using Extended SAV Approach
,”
Numer. Algorithms
,
88
(
3
), pp.
1077
1108
.10.1007/s11075-021-01068-y
26.
Quan
,
C.
,
Tang
,
T.
, and
Yang
,
J.
,
2020
, “
Numerical Energy Dissipation for Time-Fractional Phase-Field Equations
,”
J. Comput. Math.,
43(3), pp.
515
539
.10.4208/jcm.2311-m2021-0199
27.
Fatima
,
M.
,
Agarwal
,
R.
,
Abbas
,
M.
,
Mohammed
,
P.
,
Shafiq
,
M.
, and
Chorfi
,
N.
,
2024
, “
Extension of Cubic B-Spline for Solving the Time-Fractional Allen–Cahn Equation in the Context of Mathematical Physics
,”
Computation
,
12
(
3
), p.
51
.10.3390/computation12030051
28.
Choudhary
,
R.
, and
Kumar
,
D.
,
2024
, “
Collocation-Based Numerical Simulation of Fractional Order Allen–Cahn Equation
,”
J. Math. Chem.
,
62
(
1
), pp.
145
168
.10.1007/s10910-023-01525-0
29.
Jeon
,
Y.
, and
Bu
,
S.
,
2024
, “
Numerical Approach for Time-Fractional Burgers' Equation Via a Combination of Adams–Moulton and Linearized Technique
,”
J. Math. Chem.
,
62
(
5
), pp.
1189
1208
.10.1007/s10910-024-01589-6
30.
Garrappa
,
R.
,
2018
, “
Numerical Solution of Fractional Differential Equations: A Survey and a Software Tutorial
,”
Mathematics
,
6
(
2
), p.
16
.10.3390/math6020016
31.
Du
,
Q.
,
Yang
,
J.
, and
Zhou
,
Z.
,
2020
, “
Time-Fractional Allen–Cahn Equations: Analysis and Numerical Methods
,”
J. Sci. Comput.
,
85
(
2
), p.
42
.10.1007/s10915-020-01351-5
32.
Diethelm
,
K.
,
Ford
,
N.
, and
Freed
,
A.
,
2004
, “
Detailed Error Analysis for a Fractional Adams Method
,”
Numer. Algorithms
,
36
(
1
), pp.
31
52
.10.1023/B:NUMA.0000027736.85078.be
33.
Rubin
,
S.
, and
Graves
,
R.
, Jr.
,
1975
, “
Viscous Flow Solutions With a Cubic Spline Approximation
,”
Comput. Fluids
,
3
(
1
), pp.
1
36
.10.1016/0045-7930(75)90006-7
34.
Fornberg
,
B.
,
1996
,
A Practical Guide to Pseudospectral Methods
,
Cambridge University Press
,
Cambridge, UK
.
35.
Khalid
,
N.
,
Abbas
,
M.
,
Iqbal
,
M.
, and
Baleanu
,
D.
,
2020
, “
A Numerical Investigation of Caputo Time Fractional Allen–Cahn Equation Using Redefined Cubic B-Spline Functions
,”
Adv. Differ. Equations
,
2020
(
1
), p.
158
.10.1186/s13662-020-02616-x
You do not currently have access to this content.