Abstract

Figuring out the static equilibrium position of the system is necessary and essential for various multibody systems, either for providing an initial condition for transient dynamics analysis or facilitating the stability analysis of the system. Regardless of the strategy employed, the system needs to be analyzed first to establish its dynamics equations. The reduced multibody system transfer matrix method is a fully recursive dynamic method that uses joint coordinates and is an effective approach for analyzing system dynamics. The generalized accelerations can be quickly obtained, given the generalized coordinates and velocities of the system. For systems without constraint equations, the nonlinear equations for which the generalized accelerations are zero can be solved to obtain the static equilibrium position quickly. However, inherent singularities occur if Euler angles are used as the generalized coordinates for ball-and-socket joints. Therefore, Euler parameters are adopted as the generalized coordinates for ball-and-socket joints. Since Euler parameters are not independent and subject to constraint equation, the equilibrium cannot be obtained by solving only a system of nonlinear equations with zero generalized accelerations. In this paper, the reduced transfer equations of the ball-and-socket joint elements with Euler parameters are derived. Based on this, a static equilibrium solution for multibody systems containing ball-and-socket joints is established, focusing on deriving the Jacobian matrices. Numerical examples, along with comparative analyses of the dynamic method, validates the proposed method.

References

1.
Lu
,
Y.
,
1996
,
Dynamics of Flexible Multibody Systems
,
Higher Education Press
, Beijing, China.
2.
Alexandru
,
C.
,
2016
, “
Analytical Method for Determining the Static Equilibrium Position of the Rear Axles Guiding Mechanisms of the Motor Vehicles
,”
Appl. Mech. Mater.
,
841
, pp.
59
64
.10.4028/www.scientific.net/AMM.841.59
3.
Orozco-Magdaleno
,
E. C.
,
Cafolla
,
D.
,
Castillo-Castaneda
,
E.
, and
Carbone
,
G.
,
2020
, “
Static Balancing of Wheeled-Legged Hexapod Robots
,”
Robotics
,
9
(
2
), p.
23
.10.3390/robotics9020023
4.
García De Jalón
,
J.
, and
Bayo
,
E.
,
2012
,
Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge (Mechanical Engineering Series)
,
Springer
,
New York
.
5.
Zhang
,
X.
,
Rui
,
X.
,
Zhang
,
J.
,
Gu
,
J.
, and
Zhang
,
L.
,
2024
, “
Statics Analysis Based on the Reduced Multibody System Transfer Matrix Method
,”
Multibody Syst. Dyn.
,
61
(
1
), pp.
77
101
.10.1007/s11044-023-09916-6
6.
Rose
,
G. K.
,
Newman
,
B. A.
, and
Nguyen
,
D. T.
,
2019
, “
A Path Following Method for Identifying Static Equilibrium in Multi-Body-Dynamic Systems
,”
Multibody Syst. Dyn.
,
45
(
3
), pp.
315
359
.10.1007/s11044-018-9618-7
7.
Zhang
,
X.
,
Rui
,
X.
,
Zhang
,
J.
,
Zhang
,
L.
, and
Gu
,
J.
,
2024
, “
Use of a Path-Following Method for Finding Static Equilibria of Multibody Systems Modeled by the Reduced Transfer Matrix Method
,”
Multibody Syst. Dyn.
, pp.
1
24
.10.1007/s11044-024-09996-y
8.
Rose
,
G. K.
,
2017
, “
Computational Methods for Nonlinear Systems Analysis With Applications in Mathematics and Engineering
,”
Ph.D dissertation
,
Old Dominion University
,
Norfolk, VA
.10.25777/m09c-zj95
9.
Negrut
,
D.
, and
Dyer
,
A.
,
2004
, “
Adams/Solver Primer
,” MSC Software Documentation, Ann Arbor, MI.
10.
FunctionBay
,
K.
,
2012
, “
Recurdyn/Solver Theoretical Manual
,” FunctionBay, Tokyo, Japan, pp.
122
124
.
11.
Eichberger
,
A.
, and
Hofmann
,
G.
,
2007
, “
TMPT: Multi-Body Package SIMPACK
,”
Veh. Syst. Dyn.
,
45
(
Suppl. 1
), pp.
207
216
.10.1080/00423110701803385
12.
Kane
,
T. R.
,
Likins
,
P. W.
, and
Levinson
,
D. A.
,
1983
,
Spacecraft Dynamics
,
McGraw-Hill
,
New York
.
13.
Wittenburg
,
J.
,
2008
,
Dynamics of Multibody Systems
, 2nd ed.,
Springer
,
Berlin, Germany
.
14.
Shabana
,
A. A.
,
2020
,
Dynamics of Multibody Systems
, 4th ed.,
Cambridge University Press
,
New York
.
15.
Rui
,
X.
,
Zhang
,
J.
, and
Zhou
,
Q.
,
2014
, “
Automatic Deduction Theorem of Overall Transfer Equation of Multibody System
,”
Adv. Mech. Eng.
,
6
, p.
378047
.10.1155/2014/378047
16.
Masarati
,
P.
,
Quro
,
M. J. U.
, and
Zanoni
,
A.
,
2024
, “
Projection Continuation for Minimal Coordinate Set Formulation and Singularity Detection of Redundantly Constrained System Dynamics
,”
Multibody Syst. Dyn.
,
61
(
4
), pp.
453
480
.10.1007/s11044-023-09930-8
17.
Kane
,
T. R.
, and
Levinson
,
D. A.
,
1983
, “
Multibody Dynamics
,”
ASME J. Appl. Mech.
,
50
(
4b
), pp.
1071
1078
.10.1115/1.3167189
18.
Braun
,
D. J.
, and
Goldfarb
,
M.
,
2012
, “
Simulation of Constrained Mechanical Systems—Part I: An Equation of Motion
,”
ASME J. Appl. Mech.
,
79
(
4
), p.
041017
.10.1115/1.4005572
19.
Rui
,
X.
,
Zhang
,
J.
,
Wang
,
X.
,
Rong
,
B.
,
He
,
B.
, and
Jin
,
Z.
,
2022
, “
Multibody System Transfer Matrix Method: The Past, the Present, and the Future
,”
Int. J. Mech. Syst. Dyn.
,
2
(
1
), pp.
3
26
.10.1002/msd2.12037
20.
Rui
,
X.
, and
Bestle
,
D.
,
2021
, “
Reduced Multibody System Transfer Matrix Method Using Decoupled Hinge Equations
,”
Int. J. Mech. Syst. Dyn.
,
1
(
2
), pp.
182
193
.10.1002/msd2.12026
21.
Zhang
,
L.
,
Rui
,
X.
,
Zhang
,
J.
,
Gu
,
J.
,
Zheng
,
H.
, and
Li
,
T.
,
2021
, “
Study on Transfer Matrix Method for the Planar Multibody System With Closed-Loops
,”
ASME J. Comput. Nonlinear Dyn.
,
16
(
12
), p.
121006
.10.1115/1.4052433
22.
Hemingway
,
E. G.
, and
O'Reilly
,
O. M.
,
2018
, “
Perspectives on Euler Angle Singularities, Gimbal Lock, and the Orthogonality of Applied Forces and Applied Moments
,”
Multibody Syst. Dyn.
,
44
(
1
), pp.
31
56
.10.1007/s11044-018-9620-0
23.
Pfister
,
F.
,
1998
, “
Bernoulli Numbers and Rotational Kinematics
,”
ASME J. Appl. Mech.
,
65
(
3
), pp.
758
763
.10.1115/1.2789120
24.
Bai
,
Q.
,
Shehata
,
M.
, and
Nada
,
A.
,
2022
, “
Review Study of Using Euler Angles and Euler Parameters in Multibody Modeling of Spatial Holonomic and Non-Holonomic Systems
,”
Int. J. Dyn. Control
,
10
(
5
), pp.
1707
1725
.10.1007/s40435-022-00913-9
25.
Sherif
,
K.
,
Nachbagauer
,
K.
, and
Steiner
,
W.
,
2015
, “
On the Rotational Equations of Motion in Rigid Body Dynamics When Using Euler Parameters
,”
Nonlinear Dyn.
,
81
(
1–2
), pp.
343
352
.10.1007/s11071-015-1995-3
26.
Wang
,
K.
, and
Dai
,
J. S.
,
2023
, “
The Dual Euler-Rodrigues Formula in Various Mathematical Forms and Their Intrinsic Relations
,”
Mech. Mach. Theory
,
181
, p.
105184
.10.1016/j.mechmachtheory.2022.105184
27.
Shabana
,
A. A.
,
2014
, “
Euler Parameters Kinetic Singularity
,”
Proc. Inst. Mech. Eng., Part K
,
228
(
3
), pp.
307
313
.10.1177/1464419314539301
28.
Joshi
,
V.
,
Guy
,
A.
, and
Bowling
,
A.
,
2022
, “
Elimination Approach Toward Normalization Constraint for Euler Parameters
,”
Nonlinear Dyn.
,
108
(
2
), pp.
1479
1493
.10.1007/s11071-022-07236-6
29.
Kissel
,
A.
,
Bakke
,
L.
, and
Negrut
,
D.
,
2024
, “
Reducing the Constrained Multibody Dynamics Problem to the Solution of a System of Ordinary Differential Equations Via Velocity Partitioning and Lie Group Integration
,”
ASME J. Comput. Nonlinear Dyn.
,
19
(
7
), p.
071002
.10.1115/1.4065254
30.
Kang
,
C. W.
, and
Park
,
C. G.
,
2011
, “
Euler Angle Based Attitude Estimation Avoiding the Singularity Problem
,”
IFAC Proc. Vol.
,
44
(
1
), pp.
2096
2102
.10.3182/20110828-6-IT-1002.01993
31.
Peiret
,
A.
,
González
,
F.
,
Kövecses
,
J.
, and
Teichmann
,
M.
,
2018
, “
Multibody System Dynamics Interface Modelling for Stable Multirate Co-Simulation of Multiphysics Systems
,”
Mech. Mach. Theory
,
127
, pp.
52
72
.10.1016/j.mechmachtheory.2018.04.016
32.
Nikravesh
,
P. E.
, and
Chung
,
I. S.
,
1982
, “
Application of Euler Parameters to the Dynamic Analysis of Three-Dimensional Constrained Mechanical Systems
,”
ASME J. Mech. Des.
,
104
(
4
), pp.
785
791
.10.1115/1.3256437
33.
Nandihal
,
P. V.
,
Mohan
,
A.
, and
Saha
,
S. K.
,
2022
,
Dynamics of Rigid-Flexible Robots and Multibody Systems, Intelligent Systems, Control and Automation
:
Science and Engineering
, Vol.
100
,
Springer, Singapore
.
34.
Brandl
,
H.
,
Johanni
,
R.
, and
Otter
,
M.
,
1987
, “
An Algorithm for the Simulation of Multibody Systems With Kinematic Loops
,”
Proceedings of the 7th World Congress on Theory of Machines and Mechanisms, IFToMM
,
Seville, Spain
, Sept. 17–22, pp.
407
411
.
You do not currently have access to this content.