Abstract

This paper proposes an innovative numerical method called the Genocchi wavelet collocation method (GWCM) for the numerical study of fractional Polio model. The newly developed numerical algorithm is based on a functional basis and operational matrices of the Genocchi wavelets generated by the Genocchi polynomials. The desired model is in the form of fractional system of ordinary differential equations (SODE). The developed technique transforms the desired model into a framework of nonlinear algebraic equations with the help of operational matrices and equispaced collocation points. The Newton–Raphson method is used to solve the resulting system and yields an approximate solution of the nonlinear SODEs. The fractional orders in the SODEs are concerned in the Caputo sense. The GWCM findings are further corroborated by the results of the Runge–Kutta and NDSolver techniques to show the effectiveness of the suggested numerical algorithm. The technique’s validity and efficacy are demonstrated using numerical illustration. The acquired numerical results are reasonably consistent with the ND Solver results that have been explained in the tables and figures. The error and convergence analysis of the Genocchi wavelets has been also discussed for the applicability of the present method. The numerical outcomes demonstrate that (GWCM) is incredibly effective and precise for solving the polio model of fractional order. Mathematical software called Mathematica has been used for numerical computations and implementation.

References

1.
Hajar
,
R.
,
2015
, “
History of Medicine Timeline
,”
Heart Views
,
16
(
1
), pp.
43
45
.10.4103/1995-705X.153008
2.
Alexander
,
E. R.
,
1984
, “
Inactivated Poliomyelitis Vaccination: Issues Reconsidered
,”
JAMA
,
251
(
20
), pp.
2710
2712
.10.1001/jama.1984.03340440068032
3.
Iqbal
,
M. S.
,
Ahmed
,
N.
,
Akgül
,
A.
,
Satti
,
A. M.
,
Iqbal
,
Z.
,
Raza
,
A.
,
Rafiq
,
M.
,
Anjum
,
R.
,
Zakarya
,
M.
, and
Park
,
C.
,
2023
, “
Analysis of the Fractional Polio Model With the Mittag-Leffler Kernels
,”
Alexandria Eng. J.
,
64
, pp.
957
967
.10.1016/j.aej.2022.08.025
4.
Duintjer Tebbens
,
R. J.
,
Pallansch
,
M. A.
,
Kew
,
O. M.
,
Cáceres
,
V. M.
,
Sutter
,
R. W.
, and
Thompson
,
K. M.
,
2005
, “
A Dynamic Model of Poliomyelitis Outbreaks: Learning From the Past to Help Inform the Future
,”
Am. J. Epidemiol.
,
162
(
4
), pp.
358
372
.10.1093/aje/kwi206
5.
Garfinkel
,
M. S.
, and
Sarewitz
,
D.
,
2003
, “
Parallel Path: Poliovirus Research in the Vaccine Era
,”
Sci. Eng. Ethics
,
9
(
3
), pp.
319
338
.10.1007/s11948-003-0028-7
6.
Noori, N., Drake, J. M., and Rohani, P., 2017, “Comparative Epidemiology of Poliovirus Transmission,”
Sci Rep.
, 7(1), p. 17362.10.1038/s41598-017-17749-5
7.
Shulgin
,
B.
,
Stone
,
L.
, and
Agur
,
Z.
,
1998
, “
Pulse Vaccination Strategy in the Sir Epidemic Model
,”
Bull. Math. Biol.
,
60
(
6
), pp.
1123
1148
.10.1016/S0092-8240(98)90005-2
8.
Kribs-Zaleta
,
C. M.
, and
Velasco-Hernández
,
J. X.
,
2000
, “
A Simple Vaccination Model With Multiple Endemic States
,”
Math. Biosci.
,
164
(
2
), pp.
183
201
.10.1016/S0025-5564(00)00003-1
9.
Gumel
,
A. B.
, and
Moghadas
,
S. M.
,
2003
, “
A Qualitative Study of a Vaccination Model With Non-Linear Incidence
,”
Appl. Math. Comput.
,
143
(
2–3
), pp.
409
419
.10.1016/S0096-3003(02)00372-7
10.
Agarwal
,
M.
, and
Bhadauria
,
A. S.
,
2011
, “
Modeling Spread of Polio With the Role of Vaccination
,”
Appl. Appl. Math.: Int. J. (AAM)
,
6
(
2
), p.
11
.https://digitalcommons.pvamu.edu/aam/vol6/iss2/11
11.
Khan
,
A.
,
Gómez-Aguilar
,
J.
,
Khan
,
T. S.
, and
Khan
,
H.
,
2019
, “
Stability Analysis and Numerical Solutions of Fractional Order HIV/Aids Model
,”
Chaos, Solitons Fractals
,
122
, pp.
119
128
.10.1016/j.chaos.2019.03.022
12.
Jena
,
R. M.
,
Chakraverty
,
S.
, and
Baleanu
,
D.
,
2021
, “
Sir Epidemic Model of Childhood Diseases Through Fractional Operators With Mittag-Leffler and Exponential Kernels
,”
Math. Comput. Simul.
,
182
, pp.
514
534
.10.1016/j.matcom.2020.11.017
13.
Veeresha
,
P.
,
Prakasha
,
D.
, and
Baleanu
,
D.
,
2021
, “
An Efficient Technique for Fractional Coupled System Arisen in Magnetothermoelasticity With Rotation Using Mittag–Leffler Kernel
,”
ASME J. Comput. Nonlinear Dyn.
,
16
(
1
), p.
011002
.10.1115/1.4048577
14.
Atangana
,
A.
,
2018
, “
Blind in a Commutative World: Simple Illustrations With Functions and Chaotic Attractors
,”
Chaos, Solitons Fractals
,
114
, pp.
347
363
.10.1016/j.chaos.2018.07.022
15.
Karaagac
,
B.
, and
Owolabi
,
K. M.
,
2023
, “
Numerical Analysis of Polio Model: A Mathematical Approach to Epidemiological Model Using Derivative With Mittag–Leffler Kernel
,”
Math. Methods Appl. Sci.
,
46
(
7
), pp.
8175
8192
.10.1002/mma.7607
16.
Bunimovich-Mendrazitsky
,
S.
, and
Stone
,
L.
,
2005
, “
Modeling Polio as a Disease of Development
,”
J. Theor. Biol.
,
237
(
3
), pp.
302
315
.10.1016/j.jtbi.2005.04.017
17.
Haldar
,
P.
,
Agrawal
,
P.
,
Bhatnagar
,
P.
,
Tandon
,
R.
,
McGray
,
S.
,
Zehrung
,
D.
,
Jarrahian
,
C.
, and
Foster
,
J.
,
2019
, “
Fractional-Dose Inactivated Poliovirus Vaccine, India
,”
Bull. World Health Org.
,
97
(
5
), pp.
328
334
.10.2471/BLT.18.218370
18.
Kalkowska
,
D. A.
,
Pallansch
,
M. A.
,
Wassilak
,
S. G.
,
Cochi
,
S. L.
, and
Thompson
,
K. M.
,
2021
, “
Global Transmission of Live Polioviruses: Updated Dynamic Modeling of the Polio Endgame
,”
Risk Anal.
,
41
(
2
), pp.
248
265
.10.1111/risa.13447
19.
Thompson
,
J. E.
,
2014
, “
A Class Structured Mathematical Model for Polio Virus in Nigeria
,” TAMU Maths, Texas A and M University, College Station, TX, accessed Feb. 19, 2025, www.math.tamu.edu
20.
Duque-Marín
,
E.
,
Vergaño-Salazar
,
J.
,
Duarte-Gandica
,
I.
, and
Vilches
,
K.
,
2019
, “
Mathematical Modelling of Some Poliomyelitis Vaccination and Migration Scenarios in Colombia
,”
J. Phys.: Conf. Ser.
,
1160
, p.
012021
.10.1088/1742-6596/1160/1/012021
21.
Dénes
,
A.
, and
Székely
,
L.
,
2017
, “
Global Dynamics of a Mathematical Model for the Possible re-Emergence of Polio
,”
Math. Biosci.
,
293
, pp.
64
74
.10.1016/j.mbs.2017.08.010
22.
Cheng
,
E.
,
Gambhirrao
,
N.
,
Patel
,
R.
,
Zhowandai
,
A.
,
Rychtář
,
J.
, and
Taylor
,
D.
,
2020
, “
A Game-Theoretical Analysis of Poliomyelitis Vaccination
,”
J. Theor. Biol.
,
499
, p.
110298
.10.1016/j.jtbi.2020.110298
23.
de Alba
,
J. G.
,
Rebolledo_Z
,
A.
, and
Suárez
,
P.
,
1976
, “
Influencia Del Clima y la Vacunación en la Incidencia de la Poliomelitis
,”
Salud Publica de Mexico
,
18
(
3
), pp.
509
517
.https://saludpublica.mx/index.php/spm/article/view/1294
24.
Shaghaghi
,
M.
,
Soleyman-Jahi
,
S.
,
Abolhassani
,
H.
,
Yazdani
,
R.
,
Azizi
,
G.
,
Rezaei
,
N.
,
Barbouche
,
M.-R.
,
McKinlay
,
M. A.
, and
Aghamohammadi
,
A.
,
2018
, “
New Insights into Physiopathology of Immunodeficiency-Associated Vaccine-Derived Poliovirus Infection; Systematic Review of Over 5 Decades of Data
,”
Vaccine
,
36
(
13
), pp.
1711
1719
.10.1016/j.vaccine.2018.02.059
25.
Rafique
,
M.
,
Shahid
,
N.
,
Ahmed
,
N.
,
Shaikh
,
T. S.
,
Asif
,
M.
, and
Ahmad
,
M. O.
,
2020
, “
An Efficient Numerical Method for the Solution of the Polio Virus (Poliomyelitis) Epidemic Model With the Role of Vaccination
,”
Sci. Inquiry Rev.
,
4
(
4
), pp.
15
30
.10.32350/sir/2020/44/1052
26.
De Jesus
,
N. H.
,
2007
, “
Epidemics to Eradication: The Modern History of Poliomyelitis
,”
Virol. J.
,
4
(
1
), pp.
70
18
.10.1186/1743-422X-4-70
27.
Çelik
,
I.
,
2016
, “
Chebyshev Wavelet Collocation Method for Solving Generalized Burgers–Huxley Equation
,”
Math. Methods Appl. Sci.
,
39
(
3
), pp.
366
377
.10.1002/mma.3487
28.
Rahimkhani
,
P.
, and
Ordokhani
,
Y.
,
2019
, “
A Numerical Scheme Based on Bernoulli Wavelets and Collocation Method for Solving Fractional Partial Differential Equations With Dirichlet Boundary Conditions
,”
Numer. Methods Partial Differ. Equations
,
35
(
1
), pp.
34
59
.10.1002/num.22279
29.
Kumbinarasaiah
,
S.
,
Manohara
,
G.
, and
Hariharan
,
G.
,
2023
, “
Bernoulli Wavelets Functional Matrix Technique for a System of Nonlinear Singular Lane Emden Equations
,”
Math. Comput. Simul.
,
204
, pp.
133
165
.10.1016/j.matcom.2022.07.024
30.
Li
,
F.
,
Baskonus
,
H. M.
,
Kumbinarasaiah
,
S.
,
Manohara
,
G.
,
Gao
,
W.
, and
Ilhan
,
E.
,
2023
, “
An Efficient Numerical Scheme for Biological Models in the Frame of Bernoulli Wavelets
,”
Comput. Model. Eng. Sci.
,
137
(
3
), pp.
2381
2408
.10.32604/cmes.2023.028069
31.
Keshavarz
,
E.
,
Ordokhani
,
Y.
, and
Razzaghi
,
M.
,
2018
, “
The Taylor Wavelets Method for Solving the Initial and Boundary Value Problems of Bratu-Type Equations
,”
Appl. Numer. Math.
,
128
, pp.
205
216
.10.1016/j.apnum.2018.02.001
32.
Manohara
,
G.
, and
Kumbinarasaiah
,
S.
,
2024
, “
Numerical Solution of Some Stiff Systems Arising in Chemistry Via Taylor Wavelet Collocation Method
,”
J. Math. Chem.
,
62
(
1
), pp.
24
61
.10.1007/s10910-023-01508-1
33.
Yuttanan
,
B.
,
Razzaghi
,
M.
, and
Vo
,
T. N.
,
2021
, “
A Numerical Method Based on Fractional-Order Generalized Taylor Wavelets for Solving Distributed-Order Fractional Partial Differential Equations
,”
Appl. Numer. Math.
,
160
, pp.
349
367
.10.1016/j.apnum.2020.10.018
34.
Shiralashetti
,
S. C.
, and
Srinivasa
,
K.
,
2019
, “
Hermite Wavelets Method for the Numerical Solution of Linear and Nonlinear Singular Initial and Boundary Value Problems
,”
Comput. Methods Differ. Equations
,
7
(
2
), pp.
177
198
.https://cmde.tabrizu.ac.ir/article_8675_fa0cf37cf6a92c9b4d512602e40be5c3.pdf
35.
Kumbinarasaiah
,
S.
, and
Raghunatha
,
K.
,
2021
, “
The Applications of Hermite Wavelet Method to Nonlinear Differential Equations Arising in Heat Transfer
,”
Int. J. Thermofluids
,
9
, p.
100066
.10.1016/j.ijft.2021.100066
36.
Yan
,
L.
,
Kumbinarasaiah
,
S.
,
Manohara
,
G.
,
Baskonus
,
H. M.
, and
Cattani
,
C.
,
2024
, “
Numerical Solution of Fractional PDES Through Wavelet Approach
,”
Z. Angew. Math. Phys.
,
75
(
2
), p.
61
.10.1007/s00033-024-02195-x
37.
Lepik
,
Ü.
,
2005
, “
Numerical Solution of Differential Equations Using Haar Wavelets
,”
Math. Comput. Simul.
,
68
(
2
), pp.
127
143
.10.1016/j.matcom.2004.10.005
38.
Kumbinarasaiah
,
S.
, and
Yeshwanth
,
R.
,
2024
, “
A Study on chlamydia Transmission in United States Through the Haar Wavelet Technique
,”
Results Control Optim.
,
14
, p.
100396
.10.1016/j.rico.2024.100396
39.
Hariharan
,
G.
, and
Kannan
,
K.
,
2013
, “
An Overview of Haar Wavelet Method for Solving Differential and Integral Equations
,”
World Appl. Sci. J.
,
23
(
12
), pp.
1
14
.https://www.researchgate.net/publication/260342020_An_Overview_of_Haar_Wavelet_Method_for_Solving_Differential_and_Integral_Equations
40.
Youssri
,
Y.
,
Abd-Elhameed
,
W.
, and
Doha
,
E.
,
2015
, “
Ultraspherical Wavelets Method for Solving Lane–Emden Type Equations
,”
Rom. J. Phys.
,
60
(
9–10
), pp.
1298
1314
.https://rjp.nipne.ro//2015_60_9-10/RomJPhys.60.p1298.pdf
41.
Mulimani
,
M.
, and
Srinivasa
,
K.
,
2024
, “
A Novel Approach for Benjamin-Bona-Mahony Equation Via Ultraspherical Wavelets Collocation Method
,”
Int. J. Math. Comput. Eng.
,
2
(
2
), pp. 179–192.10.2478/ijmce-2024-0014
42.
Sabir
,
Z.
,
Nisar
,
K.
,
Raja
,
M. A. Z.
,
Ibrahim
,
A. A. B. A.
,
Rodrigues
,
J. J.
,
Al-Basyouni
,
K.
,
Mahmoud
,
S.
, and
Rawat
,
D. B.
,
2021
, “
Heuristic Computational Design of Morlet Wavelet for Solving the Higher Order Singular Nonlinear Differential Equations
,”
Alexandria Eng. J.
,
60
(
6
), pp.
5935
5947
.10.1016/j.aej.2021.04.001
43.
Manohara
,
G.
, and
Kumbinarasaiah
,
S.
,
2024
, “
An Innovative Fibonacci Wavelet Collocation Method for the Numerical Approximation of Emden-Fowler Equations
,”
Appl. Numer. Math.
,
201
, pp.
347
369
.10.1016/j.apnum.2024.03.016
44.
Shah
,
F. A.
,
Irfan
,
M.
,
Nisar
,
K. S.
,
Matoog
,
R.
, and
Mahmoud
,
E. E.
,
2021
, “
Fibonacci Wavelet Method for Solving Time-Fractional Telegraph Equations With Dirichlet Boundary Conditions
,”
Results Phys.
,
24
, p.
104123
.10.1016/j.rinp.2021.104123
45.
Manohara
,
G.
, and
Kumbinarasaiah
,
S.
,
2024
, “
Fibonacci Wavelet Collocation Method for the Numerical Approximation of Fractional Order Brusselator Chemical Model
,”
J. Math. Chem.
,
62
(
10
), pp.
2651
2681
.10.1007/s10910-023-01521-4
46.
Singh
,
A. K.
, and
Mehra
,
M.
,
2021
, “
Wavelet Collocation Method Based on Legendre Polynomials and Its Application in Solving the Stochastic Fractional Integro-Differential Equations
,”
J. Comput. Sci.
,
51
, p.
101342
.10.1016/j.jocs.2021.101342
47.
Shiralashetti
,
S.
, and
Kumbinarasaiah
,
S.
,
2019
, “
Laguerre Wavelets Collocation Method for the Numerical Solution of the Benjamina–Bona–Mohany Equations
,”
J. Taibah Univ. Sci.
,
13
(
1
), pp.
9
15
.10.1080/16583655.2018.1515324
48.
Shahni
,
J.
, and
Singh
,
R.
,
2022
, “
Laguerre Wavelet Method for Solving Thomas–Fermi Type Equations
,”
Eng. Comput.
,
38
(
4
), pp.
2925
2935
.10.1007/s00366-021-01309-7
49.
Srinivasa
,
K.
, and
Mundewadi
,
R. A.
,
2023
, “
Wavelets Approach for the Solution of Nonlinear Variable Delay Differential Equations
,”
Int. J. Math. Comput. Eng.
,
1
(
2
), pp.
139
148
.10.2478/ijmce-2023-0011
50.
Faheem
,
M.
,
Raza
,
A.
, and
Khan
,
A.
,
2021
, “
Collocation Methods Based on Gegenbauer and Bernoulli Wavelets for Solving Neutral Delay Differential Equations
,”
Math. Comput. Simul.
,
180
, pp.
72
92
.10.1016/j.matcom.2020.08.018
51.
Çelik
,
İ.
,
2021
, “
Squeezing Flow of Nanofluids of Cu–Water and Kerosene Between Two Parallel Plates by Gegenbauer Wavelet Collocation Method
,”
Eng. Comput.
,
37
(
1
), pp.
251
264
.10.1007/s00366-019-00821-1
52.
Secer
,
A.
, and
Cinar
,
M.
,
2020
, “
A Jacobi Wavelet Collocation Method for Fractional Fisher’s Equation in Time
,”
Therm. Sci.
,
24
(
Suppl. 1
), pp.
119
129
.10.2298/TSCI20S1119S
53.
Wang
,
G.
,
Yang
,
K.
,
Gu
,
H.
,
Guan
,
F.
, and
Kara
,
A.
,
2020
, “
A (2 + 1)-Dimensional Sine-Gordon and Sinh-Gordon Equations With Symmetries and Kink Wave Solutions
,”
Nucl. Phys. B
,
953
, p.
114956
.10.1016/j.nuclphysb.2020.114956
54.
Wang
,
G.
,
2021
, “
A New (3 + 1)-Dimensional Schrödinger Equation: Derivation, Soliton Solutions and Conservation Laws
,”
Nonlinear Dyn.
,
104
(
2
), pp.
1595
1602
.10.1007/s11071-021-06359-6
55.
Wang
,
G.
,
2021
, “
Symmetry Analysis, Analytical Solutions and Conservation Laws of a Generalized KdV–Burgers–Kuramoto Equation and Its Fractional Version
,”
Fractals
,
29
(
4
), p.
2150101
.10.1142/S0218348X21501012
56.
Wang
,
G.
, and
Wazwaz
,
A.-M.
,
2022
, “
On the Modified Gardner Type Equation and Its Time Fractional Form
,”
Chaos, Solitons Fractals
,
155
, p.
111694
.10.1016/j.chaos.2021.111694
57.
Wang
,
G.
, and
Wazwaz
,
A.-M.
,
2022
, “
A New (3 + 1)-Dimensional KdV Equation and mKdV Equation With Their Corresponding Fractional Forms
,”
Fractals
,
30
(
4
), p.
2250081
.10.1142/S0218348X22500815
58.
Dehestani
,
H.
, and
Ordokhani
,
Y.
,
2019
, “
Genocchi Wavelet Method for Solving Various Types of Conformable Fractional Differential Equations
,”
50th Annual Iranian Mathematics Conference
, Shiraz, Iran, Aug. 26–29, pp.
1
4
.https://hal.science/hal-02919415/document
59.
Isah
,
A.
,
2017
, “
Wavelets Operational Methods for Fractional Differential Equations and Systems of Fractional Differential Equations
,” Ph.D. thesis,
Universiti Tun Hussein Onn Malaysia
,
Parit Raja, Malaysia
.
60.
Manohara
,
G.
, and
Kumbinarasaiah
,
S.
,
2024
, “
Numerical Approximation of the Typhoid Disease Model Via Genocchi Wavelet Collocation Method
,”
J. Umm Al-Qura Univ. Appl. Sci.
,
10
(
4
), pp.
682
697
.10.1007/s43994-024-00134-0
61.
Rosenau
,
P.
, and
Hyman
,
J. M.
,
1993
, “
Compactions: Solitons With Finite Wavelength
,”
Phys. Rev. Lett.
,
70
(
5
), pp.
564
567
.10.1103/PhysRevLett.70.564
62.
Dehestani
,
H.
,
Ordokhani
,
Y.
, and
Razzaghi
,
M.
,
2022
, “
Modified Wavelet Method for Solving Multitype Variable-Order Fractional Partial Differential Equations Generated From the Modeling of Phenomena
,”
Math. Sci.
,
16
(
4
), pp.
343
359
.10.1007/s40096-021-00425-1
63.
Phang
,
C.
,
Ismail
,
N. F.
,
Isah
,
A.
, and
Loh
,
J. R.
,
2018
, “
A New Efficient Numerical Scheme for Solving Fractional Optimal Control Problems Via a Genocchi Operational Matrix of Integration
,”
J. Vib. Control
,
24
(
14
), pp.
3036
3048
.10.1177/1077546317698909
64.
Kumbinarasaiah
,
S.
,
2023
, “
A Novel Approach for Multi-Dimensional Fractional Coupled Navier–Stokes Equation
,”
SeMA J.
,
80
(
2
), pp.
261
282
.10.1007/s40324-022-00289-y
65.
Dehestani
,
H.
,
Ordokhani
,
Y.
, and
Razzaghi
,
M.
,
2019
, “
On the Applicability of Genocchi Wavelet Method for Different Kinds of Fractional-Order Differential Equations With Delay
,”
Numer. Linear Algebra Appl.
,
26
(
5
), p.
e2259
.10.1002/nla.2259
66.
Alkresheh
,
H. A.
, and
Ismail
,
A. I.
,
2021
, “
Multi-Step Fractional Differential Transform Method for the Solution of Fractional Order Stiff Systems
,”
Ain Shams Eng. J.
,
12
(
4
), pp.
4223
4231
.10.1016/j.asej.2017.03.017
67.
Öztürk
,
Y.
,
2018
, “
Numerical Solution of Systems of Differential Equations Using Operational Matrix Method With Chebyshev Polynomials
,”
J. Taibah Univ. Sci.
,
12
(
2
), pp.
155
162
.10.1080/16583655.2018.1451063
You do not currently have access to this content.