Abstract

Characterizing the nonlinear behavior of dynamical systems near the stability boundary is a critical step toward understanding, designing, and controlling systems prone to stability concerns. Traditional methods for bifurcation analysis in both experimental systems and large-dimensional models are often hindered either by the absence of an accurate model or by the analytical complexity involved. This paper presents a novel approach that combines the theoretical frameworks of nonlinear reduced-order modeling and stability analysis with advanced machine learning techniques to perform bifurcation analysis in dynamical systems. By focusing on a low-dimensional nonlinear invariant manifold, this work proposes a data-driven methodology that simplifies the process of bifurcation analysis in dynamical systems. The core of our approach lies in utilizing carefully designed neural networks to identify nonlinear transformations that map observation space into reduced manifold coordinates in its normal form where bifurcation analysis can be performed. The unique integration of analytical and data-driven approaches in the proposed method enables the learning of these transformations and the performance of bifurcation analysis with a limited number of trajectories. Therefore, this approach improves bifurcation analysis in model-less experimental systems and cost-sensitive high-fidelity simulations. The effectiveness of this approach is demonstrated across several examples.

References

1.
Andersen
,
T. G.
,
Bollerslev
,
T.
,
Christoffersen
,
P.
, and
Diebold
,
F. X.
,
2005
, “
Volatility Forecasting
,”National Bureau of Economic Research, Cambridge, MA, Working Paper No.
11188
.10.3386/w11188
2.
Neri
,
U.
, and
Venturi
,
B.
,
2007
, “
Stability and Bifurcations in IS-LM Economic Models
,”
Int. Rev. Econ.
,
54
(
1
), pp.
53
65
.10.1007/s12232-007-0007-4
3.
Kuzmenko
,
O. V.
,
Lieonov
,
S. V.
, and
Boiko
,
A. O.
,
2020
, “
Data Mining and Bifurcation Analysis of the Risk of Money Laundering With the Involvement of Financial Institutions
,”
J. Int. Stud
, 13(3), pp.
332
339
.10.14254/2071-8330.2020/13-3/22
4.
Ghadami
,
A.
,
Gourgou
,
E.
, and
Epureanu
,
B. I.
,
2018
, “
Rate of Recovery From Perturbations as a Means to Forecast Future Stability of Living Systems
,”
Sci. Rep.
,
8
(
1
), p.
9271
.10.1038/s41598-018-27573-0
5.
Scheffer, M., 2009, Critical Transitions in Nature and Society, Princeton University Press, Princeton, NJ.
6.
Upadhyay
,
R. K.
,
Roy
,
P.
, and
Datta
,
J.
,
2015
, “
Complex Dynamics of Ecological Systems Under Nonlinear Harvesting: Hopf Bifurcation and Turing Instability
,”
Nonlinear Dyn.
,
79
(
4
), pp.
2251
2270
.10.1007/s11071-014-1808-0
7.
Lucarini
,
V.
, and
Bódai
,
T.
,
2017
, “
Edge States in the Climate System: Exploring Global Instabilities and Critical Transitions
,”
Nonlinearity
,
30
(
7
), pp.
R32
R66
.10.1088/1361-6544/aa6b11
8.
Ashwin
,
P.
,
Wieczorek
,
S.
,
Vitolo
,
R.
, and
Cox
,
P.
,
2012
, “
Tipping Points in Open Systems: Bifurcation, Noise-Induced and Rate-Dependent Examples in the Climate System
,”
Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci.
,
370
(
1962
), pp.
1166
1184
.10.1098/rsta.2011.0306
9.
Baurmann
,
M.
,
Gross
,
T.
, and
Feudel
,
U.
,
2007
, “
Instabilities in Spatially Extended Predator–Prey Systems: Spatio-Temporal Patterns in the Neighborhood of Turing–Hopf Bifurcations
,”
J. Theor. Biol.
,
245
(
2
), pp.
220
229
.10.1016/j.jtbi.2006.09.036
10.
Wang
,
W.
, and
Ruan
,
S.
,
2004
, “
Bifurcations in an Epidemic Model With Constant Removal Rate of the Infectives
,”
J. Math. Anal. Appl.
,
291
(
2
), pp.
775
793
.10.1016/j.jmaa.2003.11.043
11.
Chitnis
,
N.
,
Cushing
,
J. M.
, and
Hyman
,
J.
,
2006
, “
Bifurcation Analysis of a Mathematical Model for Malaria Transmission
,”
SIAM J. Appl. Math.
,
67
(
1
), pp.
24
45
.10.1137/050638941
12.
Din
,
A.
,
2021
, “
The Stochastic Bifurcation Analysis and Stochastic Delayed Optimal Control for Epidemic Model With General Incidence Function
,”
Chaos: Interdiscip. J. Nonlinear Sci.
,
31
(
12
), p.
123101
.10.1063/5.0063050
13.
Kramer
,
M. A.
,
Truccolo
,
W.
,
Eden
,
U. T.
,
Lepage
,
K. Q.
,
Hochberg
,
L. R.
,
Eskandar
,
E. N.
, and
Madsen
,
J. R.
, et al.,
2012
, “
Human Seizures Self-Terminate Across Spatial Scales Via a Critical Transition
,”
Proc. Natl. Acad. Sci.
,
109
(
51
), pp.
21116
21121
.10.1073/pnas.1210047110
14.
Chiba, H., and Medvedev, G. S., 2019, “The Mean Field Analysis of the Kuramoto Model on Graphs II. Asymptotic Stability of the Incoherent State, Center Manifold Reduction, and Bifurcations,”
Discrete and Continuous Dynamical Systems
, 39(7), pp.
3897
3921
.10.3934/dcds.2019157
15.
Goldbeter
,
A.
,
2018
, “
Dissipative Structures in Biological Systems: Bistability, Oscillations, Spatial Patterns and Waves
,”
Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci.
,
376
(
2124
), p.
20170376
.10.1098/rsta.2017.0376
16.
Ghadami
,
A.
, and
Epureanu
,
B. I.
,
2021
, “
Forecasting the Onset of Traffic Congestions on Circular Roads
,”
IEEE Trans. Intell. Transp. Syst.
,
22
(
2
), pp.
1196
1205
.10.1109/TITS.2020.2964021
17.
Ghadami
,
A.
,
Cesnik
,
C. E.
, and
Epureanu
,
B. I.
,
2018
, “
Model-Less Forecasting of Hopf Bifurcations in Fluid-Structural Systems
,”
J. Fluids Struct.
,
76
, pp.
1
13
.10.1016/j.jfluidstructs.2017.09.005
18.
Yan
,
Y.
, and
Wiercigroch
,
M.
,
2019
, “
Dynamics of Rotary Drilling With Non-Uniformly Distributed Blades
,”
Int. J. Mech. Sci.
,
160
, pp.
270
281
.10.1016/j.ijmecsci.2019.05.016
19.
Dijkstra
,
H. A.
,
Wubs
,
F. W.
,
Cliffe
,
A. K.
,
Doedel
,
E.
,
Dragomirescu
,
I. F.
,
Eckhardt
,
B.
,
Gelfgat
,
A. Y.
, et al.,
2014
, “
Numerical Bifurcation Methods and Their Application to Fluid Dynamics: Analysis Beyond Simulation
,”
Commun. Comput. Phys.
,
15
(
1
), pp.
1
45
.10.4208/cicp.240912.180613a
20.
Li
,
M.
, and
Haller
,
G.
,
2022
, “
Nonlinear Analysis of Forced Mechanical Systems With Internal Resonance Using Spectral Submanifolds, Part II: Bifurcation and Quasi-Periodic Response
,”
Nonlinear Dyn.
,
110
(
2
), pp.
1045
1080
.10.1007/s11071-022-07476-6
21.
Ghadami
,
A.
, and
Epureanu
,
B. I.
,
2016
, “
Bifurcation Forecasting for Large Dimensional Oscillatory Systems: Forecasting Flutter Using Gust Responses
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
6
), p.
061009
.10.1115/1.4033920
22.
Hartman
,
P.
,
2002
,
Ordinary Differential Equations
,
SIAM
,
Philadelphia, PA
.
23.
Carr, J., 2012, Applications of Centre Manifold Theory, Applied Mathematical Sciences Series, Springer-Verlag, New York.
24.
Sijbrand
,
J.
,
1985
, “
Properties of Center Manifolds
,”
Trans. Am. Math. Soc.
,
289
(
2
), pp.
431
469
.10.1090/S0002-9947-1985-0783998-8
25.
Guckenheimer
,
J.
, and
Holmes
,
P.
,
2013
, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,
Applied Mathematical Sciences Series
, Springer-Verlag, New York.10.1007/978-1-4612-1140-2
26.
Nayfeh
,
A. H.
,
2011
,
The Method of Normal Forms
,
Wiley
,
Weinheim, Germany
.
27.
Wiggins, S., 2003, Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd ed.,
Texts in Applied Mathematics Series
, Springer-Verlag, New York.10.1007/b97481
28.
Dias
,
S.
,
Budišić
,
M.
,
Piperni
,
P.
, and
Helenbrook
,
B. T.
,
2024
, “
Identifying Buffet Oscillations Using Sliding-Window Dynamic Mode Decomposition
,”
AIAA J.
, 62(8), pp.
1
13
.10.2514/1.J063929
29.
Jafarzadeh
,
S.
,
Genc
,
I.
, and
Nehorai
,
A.
,
2021
, “
Real-Time Transient Stability Prediction and Coherency Identification in Power Systems Using Koopman Mode Analysis
,”
Electr. Power Syst. Res.
,
201
, p.
107565
.10.1016/j.epsr.2021.107565
30.
Rajasegar
,
R.
,
Choi
,
J.
,
McGann
,
B.
,
Oldani
,
A.
,
Lee
,
T.
,
Hammack
,
S. D.
,
Carter
,
C. D.
, and
Yoo
,
J.
,
2018
, “
Comprehensive Combustion Stability Analysis Using Dynamic Mode Decomposition
,”
Energy Fuels
,
32
(
9
), pp.
9990
9996
.10.1021/acs.energyfuels.8b02433
31.
Das
,
A.
,
Marzocca
,
P.
,
Coppotelli
,
G.
,
Levinski
,
O.
, and
Taylor
,
P.
,
2024
, “
A Data-Driven Approach for Rapid Detection of Aeroelastic Modes From Flutter Flight Test Based on Limited Sensor Measurements
,”
Mech. Syst. Signal Process.
,
220
, p.
111712
.10.1016/j.ymssp.2024.111712
32.
Sayadi
,
T.
,
Schmid
,
P. J.
,
Richecoeur
,
F.
, and
Durox
,
D.
,
2015
, “
Parametrized Data-Driven Decomposition for Bifurcation Analysis, With Application to Thermo-Acoustically Unstable Systems
,”
Phys. Fluids
,
27
(
3
), p.
037102
.10.1063/1.4913868
33.
Lim
,
J.
, and
Epureanu
,
B. I.
,
2011
, “
Forecasting a Class of Bifurcations: Theory and Experiment
,”
Phys. Rev. E–Stat., Nonlinear, Soft Matter Phys.
,
83
(
1
), p.
016203
.10.1103/PhysRevE.83.016203
34.
Haasdonk
,
B.
,
Hamzi
,
B.
,
Santin
,
G.
, and
Wittwar
,
D.
,
2021
, “
Kernel Methods for Center Manifold Approximation and a Weak Data-Based Version of the Center Manifold Theorem
,”
Phys. D: Nonlinear Phenom.
,
427
, p.
133007
.10.1016/j.physd.2021.133007
35.
Yair
,
O.
,
Talmon
,
R.
,
Coifman
,
R. R.
, and
Kevrekidis
,
I. G.
,
2017
, “
Reconstruction of Normal Forms by Learning Informed Observation Geometries From Data
,”
Proc. Natl. Acad. Sci.
,
114
(
38
), pp.
E7865
E7874
.10.1073/pnas.1620045114
36.
Brunton
,
S. L.
,
Proctor
,
J. L.
, and
Kutz
,
J. N.
,
2016
, “
Discovering Governing Equations From Data by Sparse Identification of Nonlinear Dynamical Systems
,”
Proc. Natl. Acad. Sci.
,
113
(
15
), pp.
3932
3937
.10.1073/pnas.1517384113
37.
Ghadami
,
A.
, and
Epureanu
,
B. I.
,
2022
, “
Data-Driven Prediction in Dynamical Systems: Recent Developments
,”
Philos. Trans. R. Soc. A
,
380
(
2229
), p.
20210213
.10.1098/rsta.2021.0213
38.
Champion
,
K.
,
Lusch
,
B.
,
Kutz
,
J. N.
, and
Brunton
,
S. L.
,
2019
, “
Data-Driven Discovery of Coordinates and Governing Equations
,”
Proc. Natl. Acad. Sci.
,
116
(
45
), pp.
22445
22451
.10.1073/pnas.1906995116
39.
Lusch
,
B.
,
Kutz
,
J. N.
, and
Brunton
,
S. L.
,
2018
, “
Deep Learning for Universal Linear Embeddings of Nonlinear Dynamics
,”
Nat. Commun.
,
9
(
1
), p.
4950
.10.1038/s41467-018-07210-0
40.
Ghadami
,
A.
, and
Epureanu
,
B. I.
,
2022
, “
Deep Learning for Centre Manifold Reduction and Stability Analysis in Nonlinear Systems
,”
Philos. Trans. R. Soc. A
,
380
(
2229
), p.
20210212
.10.1098/rsta.2021.0212
41.
Kalia
,
M.
,
Brunton
,
S. L.
,
Meijer
,
H. G.
,
Brune
,
C.
, and
Kutz
,
J. N.
,
2021
, “
Learning Normal Form Autoencoders for Data-Driven Discovery of Universal, Parameter-Dependent Governing Equations
,” preprint
arXiv:2106.05102
.10.48550/arXiv.2106.05102
42.
Kelley
,
A.
,
1967
, “
The Stable, Center-Stable, Center, Center-Unstable, Unstable Manifolds
,”
J. Differ. Equations
,
3
(
4
), pp.
546
570
.10.1016/0022-0396(67)90016-2
43.
Chua, L. O., 1992, “
The Genesis of Chua's Circuit
,” University of California, Berkeley, CA, Report No. UCB/ERL M92/1.https://acoustique.ec-lyon.fr/chaos/Chua92.pdf
44.
Huang
,
A.
,
Pivka
,
L.
,
Wu
,
C. W.
, and
Franz
,
M.
,
1996
, “
Chua's Equation With Cubic Nonlinearity
,”
Int. J. Bifurcation Chaos
,
06
(
12a
), pp.
2175
2222
.10.1142/S0218127496001454
45.
Algaba
,
A.
,
Freire
,
E.
,
Gamero
,
E.
, and
Rodriguez-Luis
,
A. J.
,
1999
, “
On the Takens-Bogdanov Bifurcation in the Chua's Equation
,”
IEICE Trans. Fundam. Electron., Commun. Comput. Sci.
,
82
(
9
), pp.
1722
1728
.https://people.eecs.berkeley.edu/~chua/papers/Algaba99.pdf
You do not currently have access to this content.