Abstract

A nonregular oscillation is not enough to define a system as chaotic. A more in-depth investigation is required to prove the existence of chaotic behavior, which is challenging. Although many scientists use the Lyapunov Characteristic Exponents to detect chaos, it is not the only method. Several scientists have introduced different methods that utilize various properties of dynamical systems. Hidden Attractors may be chaotic or regular. The fact that they have small basins of attraction introduces difficulties in locating and characterizing them. The paper presents four different chaotic indicators based on the evolution of the deviation vectors: the maximal Lyapunov Exponent, the Lyapunov Characteristic Exponents, the Fast Lyapunov Index (FLI), and the Small Alignment Index. It includes their properties and the advantages and disadvantages of each method. Also, it includes the algorithms to calculate them and their implementation in Python. The paper closes with a comparison between the four indices applied to a system with hidden attractors.

References

1.
Lorenz
,
E. N.
,
1963
, “
Deterministic Nonperiodic Flow
,”
J. Atmos. Sci.
,
20
(
2
), pp.
130
141
.10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
2.
Devaney
,
R. L.
,
2018
,
An Introduction to Chaotic Dynamical Systems
,
CRC Press
, Boston, MA.
3.
Skokos
,
C.
,
2001
, “
Alignment Indices: A New, Simple Method for Determining the Ordered or Chaotic Nature of Orbits
,”
J. Phys. A: Math. General
,
34
(
47
), pp.
10029
10043
.10.1088/0305-4470/34/47/309
4.
Vibe
,
K.
, and
Vesin
,
J.-M.
,
1996
, “
On Chaos Detection Methods
,”
Int. J. Bifurcation Chaos
,
06
(
3
), pp.
529
543
.10.1142/S0218127496000230
5.
Sándor
,
Z.
,
Érdi
,
B.
,
Széll
,
A.
, and
Funk
,
B.
,
2004
, “
The Relative Lyapunov Indicator: An Efficient Method of Chaos Detection
,”
Celestial Mech. Dyn. Astron.
,
90
(
1–2
), pp.
127
138
.10.1007/s10569-004-8129-4
6.
Lega
,
E.
,
Guzzo
,
M.
, and
Froeschlé
,
C.
,
2016
, “
Theory and Applications of the Fast Lyapunov Indicator (FLI) Method
,”
Chaos Detection and Predictability
, Springer, Berlin, Germany, pp.
35
54
.10.1007/978-3-662-48410-4
7.
Muthu
,
J. S.
, and
Murali
,
P.
,
2021
, “
Review of Chaos Detection Techniques Performed on Chaotic Maps and Systems in Image Encryption
,”
SN Comput. Sci.
,
2
(
5
), p.
392
.10.1007/s42979-021-00778-3
8.
Kinsner
,
W.
,
2006
, “
Characterizing Chaos Through Lyapunov Metrics
,”
IEEE Trans. Syst., Man, Cybern., Part C (Appl. Rev.)
,
36
(
2
), pp.
141
151
.10.1109/TSMCC.2006.871132
9.
Toker
,
D.
,
Sommer
,
F. T.
, and
D'Esposito
,
M.
,
2020
, “
A Simple Method for Detecting Chaos in Nature
,”
Commun. Biol.
,
3
(
1
), p.
11
.10.1038/s42003-019-0715-9
10.
Dhamala
,
M.
,
Lai
,
Y.-C.
, and
Kostelich
,
E. J.
,
2000
, “
Detecting Unstable Periodic Orbits From Transient Chaotic Time Series
,”
Phys. Rev. E
,
61
(
6
), pp.
6485
6489
.10.1103/PhysRevE.61.6485
11.
Alves
,
P.
,
Duarte
,
L.
, and
da Mota
,
L.
,
2017
, “
A New Characterization of Chaos From a Time Series
,”
Chaos, Solitons Fractals
,
104
, pp.
323
326
.10.1016/j.chaos.2017.08.033
12.
Barrio
,
R.
,
Lozano
,
A.
,
Mayora-Cebollero
,
A.
,
Mayora-Cebollero
,
C.
,
Miguel
,
A.
,
Ortega
,
A.
,
Serrano
,
S.
, and
Vigara
,
R.
,
2023
, “
Deep Learning for Chaos Detection
,”
Chaos
,
33
(
7
), p.
073146
.10.1063/5.0143876
13.
Bryant
,
P.
,
Brown
,
R.
, and
Abarbanel
,
H. D.
,
1990
, “
Lyapunov Exponents From Observed Time Series
,”
Phys. Rev. Lett.
,
65
(
13
), pp.
1523
1526
.10.1103/PhysRevLett.65.1523
14.
Bryant
,
P.
,
1991
, “
Computation of Lyapunov Exponents From Experimental Data
,”
Proceedings of the 1st Experimental Chaos Conference
, Arlington, VA, Oct. 1–3, pp.
11
23
.
15.
Abarbanel
,
H.
,
2012
,
Analysis of Observed Chaotic Data
,
Springer Science & Business Media
, Berlin, Germany.
16.
Rogers
,
T. L.
,
Johnson
,
B. J.
, and
Munch
,
S. B.
,
2022
, “
Chaos is Not Rare in Natural Ecosystems
,”
Nat. Ecol. Evol.
,
6
(
8
), pp.
1105
1111
.10.1038/s41559-022-01787-y, Nature.
17.
Liu
,
C.-W.
,
Thorp
,
J.
,
Lu
,
J.
,
Thomas
,
R.
, and
Chiang
,
H.-D.
,
1994
, “
Detection of Transiently Chaotic Swings in Power Systems Using Real-Time Phasor Measurements
,”
IEEE Trans. Power Syst.
,
9
(
3
), pp.
1285
1292
.10.1109/59.336138
18.
Gao
,
J. B.
,
1999
, “
Recurrence Time Statistics for Chaotic Systems and Their Applications
,”
Phys. Rev. Lett.
,
83
(
16
), pp.
3178
3181
.10.1103/PhysRevLett.83.3178
19.
Lilienkamp
,
T.
, and
Parlitz
,
U.
,
2020
, “
Terminating Transient Chaos in Spatially Extended Systems
,”
Chaos
,
30
(
5
), p.
051108
.10.1063/5.0011506
20.
Skokos
,
C. H.
, and
Manos
,
T.
,
2016
, “
The Smaller (SALI) and the Generalized (GALI) Alignment Indices: Efficient Methods of Chaos Detection
,”
Chaos Detection and Predictability
,
Springer
, Berlin, Germany, pp.
129
181
.
21.
Mestre
,
M. F.
,
Cincotta
,
P. M.
, and
Giordano
,
C. M.
,
2011
, “
Analytical Relation Between Two Chaos Indicators: FLI and MEGNO
,”
Mon. Not. R. Astron. Soc.: Lett.
,
414
(
1
), pp.
L100
L103
.10.1111/j.1745-3933.2011.01065.x
22.
Wąż
,
P.
, and
Bielińska-Wkaż
,
D.
,
2009
, “
Asymmetry Coefficients as Indicators of Chaos
,”
Acta Phys. Pol., A
,
116
(
6
), pp.
987
991, Poland
.
23.
Santos
,
L. F.
,
Pérez-Bernal
,
F.
, and
Torres-Herrera
,
E. J.
,
2020
, “
Speck of Chaos
,”
Phys. Rev. Res.
,
2
, p.
043034
.10.1103/PhysRevResearch.2.043034
24.
Maffione
,
N. P.
,
Darriba
,
L. A.
,
Cincotta
,
P. M.
, and
Giordano
,
C. M.
,
2011
, “
A Comparison of Different Indicators of Chaos Based on the Deviation Vectors: Application to Symplectic Mappings
,”
Celestial Mech. Dyn. Astron.
,
111
(
3
), pp.
285
307
.10.1007/s10569-011-9373-z
25.
Ma
,
D.-Z.
,
Long
,
Z.-C.
, and
Zhu
,
Y.
,
2016
, “
Application of Indicators for Chaos in Chaotic Circuit Systems
,”
Int. J. Bifurcation Chaos
,
26
(
11
), p.
1650182
.10.1142/S0218127416501820
26.
Lukes-Gerakopoulos
,
G.
,
2014
, “
Adjusting Chaotic Indicators to Curved Spacetimes
,”
Phys. Rev. D
,
89
(
4
), p.
043002
.10.1103/PhysRevD.89.043002
27.
Maffione
,
N. P.
,
Darriba
,
L. A.
,
Cincotta
,
P. M.
, and
Giordano
,
C. M.
,
2013
, “
Chaos Detection Tools: Application to a Self-Consistent Triaxial Model
,”
Mon. Not. R. Astron. Soc.
,
429
(
3
), pp.
2700
2717
.10.1093/mnras/sts539
28.
Carpintero
,
D.
,
Maffione
,
N.
, and
Darriba
,
L.
,
2014
, “
LP-VIcode: A Program to Compute a Suite of Variational Chaos Indicators
,”
Astron. Comput.
,
5
, pp.
19
27
.10.1016/j.ascom.2014.04.001
29.
Bazzani
,
A.
,
Giovannozzi
,
M.
,
Montanari
,
C. E.
, and
Turchetti
,
G.
,
2023
, “
Performance Analysis of Indicators of Chaos for Nonlinear Dynamical Systems
,”
Phys. Rev. E
,
107
(
6
), p.
064209
.10.1103/PhysRevE.107.064209
30.
Han
,
W.
,
2008
, “
Chaos and Dynamics of Spinning Particles in Kerr Spacetime
,”
Gen. Relativ. Gravitation
,
40
(
9
), pp.
1831
1847
.10.1007/s10714-007-0598-9
31.
Moges
,
H. T.
,
Manos
,
T.
, and
Skokos
,
C.
,
2022
, “
Anomalous Diffusion in Single and Coupled Standard Maps With Extensive Chaotic Phase Spaces
,”
Phys. D: Nonlinear Phenom.
,
431
, p.
133120
.10.1016/j.physd.2021.133120
32.
Katsanikas
,
M.
,
Agaoglou
,
M.
, and
Montoya
,
F. G.
,
2022
, “
Introduction to Special Issue: Chaos Indicators, Phase Space and Chemical Reaction Dynamics
,”
Phys. D: Nonlinear Phenom.
,
439
, p.
133385
.10.1016/j.physd.2022.133385
33.
Ngamga
,
E. J.
,
Buscarino
,
A.
,
Frasca
,
M.
,
Sciuto
,
G.
,
Kurths
,
J.
, and
Fortuna
,
L.
,
2010
, “
Recurrence-Based Detection of the Hyperchaos-Chaos Transition in an Electronic Circuit
,”
Chaos
,
20
(
4
), p.
043115
.10.1063/1.3498731
34.
Njimah
,
O. M.
,
Ramadoss
,
J.
,
Telem
,
A. N. K.
,
Kengne
,
J.
, and
Rajagopal
,
K.
,
2023
, “
Coexisting Oscillations and Four-Scroll Chaotic Attractors in a Pair of Coupled Memristor-Based Duffing Oscillators: Theoretical Analysis and Circuit Simulation
,”
Chaos, Solitons Fractals
,
166
, p.
112983
.10.1016/j.chaos.2022.112983
35.
Barrio
,
R.
,
Borczyk
,
W.
, and
Breiter
,
S.
,
2009
, “
Spurious Structures in Chaos Indicators Maps
,”
Chaos, Solitons Fractals
,
40
(
4
), pp.
1697
1714
.10.1016/j.chaos.2007.09.084
36.
Forlevesi
,
M.
,
Egydio de Carvalho
,
R.
, and
De Lima
,
E. F.
,
2023
, “
Lagrangian Descriptor and Escape Time as Tools to Investigate the Dynamics of Laser-Driven Polar Molecules
,”
Phys. Rev. E
,
107
(
2
), p.
024209
.10.1103/PhysRevE.107.024209
37.
Wang
,
X.
,
Liu
,
L.
, and
Song
,
M.
,
2023
, “
Remote Sensing Image and Multi-Type Image Joint Encryption Based on NCCS
,”
Nonlinear Dyn.
,
111
(
15
), pp.
14537
14563
.10.1007/s11071-023-08578-5
38.
Wang
,
Y.
,
Liu
,
S.
, and
Khan
,
A.
,
2023
, “
On Fractional Coupled Logistic Maps: Chaos Analysis and Fractal Control
,”
Nonlinear Dyn.
,
111
(
6
), pp.
5889
5904
.10.1007/s11071-022-08141-8
39.
Hu
,
M.
,
Li
,
J.
, and
Di
,
X.
,
2023
, “
Quantum Image Encryption Scheme Based on 2d s Ine 2-l Ogistic Chaotic Map
,”
Nonlinear Dyn.
,
111
(
3
), pp.
2815
2839
.10.1007/s11071-022-07942-1
40.
Kafetzis
,
I.
,
Moysis
,
L.
, and
Volos
,
C.
,
2023
, “
Assessing the Chaos Strength of Taylor Approximations of the Sine Chaotic Map
,”
Nonlinear Dyn.
,
111
(
3
), pp.
2755
2778
.10.1007/s11071-022-07929-y
41.
Wang
,
M.
,
An
,
M.
,
Zhang
,
X.
, and
Iu
,
H. H.-C.
,
2023
, “
Two-Variable Boosting Bifurcation in a Hyperchaotic Map and Its Hardware Implementation
,”
Nonlinear Dyn.
,
111
(
2
), pp.
1871
1889
.10.1007/s11071-022-07922-5
42.
Moneer
,
E. M.
,
Steklain
,
A. F.
,
Dubeibe
,
F. L.
,
Alsaif
,
N. A.
, and
Zotos
,
E. E.
,
2023
, “
On the Dynamics of an Inflationary Bianchi IX Space–Time
,”
Chaos, Solitons Fractals
,
168
, p.
113152
.10.1016/j.chaos.2023.113152
43.
Uddin
,
M. J.
,
Rana
,
S. M. S.
,
Işık
,
S.
, and
Kangalgil
,
F.
,
2023
, “
On the Qualitative Study of a Discrete Fractional Order Prey–Predator Model With the Effects of Harvesting on Predator Population
,”
Chaos, Solitons Fractals
,
175
, p.
113932
.10.1016/j.chaos.2023.113932
44.
Johansyah
,
M. D.
,
Sambas
,
A.
,
Zheng
,
S.
,
Benkouider
,
K.
,
Vaidyanathan
,
S.
,
Mohamed
,
M. A.
, and
Mamat
,
M.
,
2023
, “
A Novel Financial System With One Stable and Two Unstable Equilibrium Points: Dynamics, Coexisting Attractors, Complexity Analysis and Synchronization Using Integral Sliding Mode Control
,”
Chaos, Solitons Fractals
,
177
, p.
114283
.10.1016/j.chaos.2023.114283
45.
Belmar-Monterrubio
,
R.
,
Quiroz-Ibarra
,
J. E.
, and
Cervantes-Sodi
,
F.
,
2023
, “
A Versatile Mathematical Function for Generating Stable and Chaotic Systems: A Data Encryption Application
,”
Chaos, Solitons Fractals
,
167
, p.
113047
.10.1016/j.chaos.2022.113047
46.
Lampart
,
M.
, and
Zapoměl
,
J.
,
2023
, “
The Disturbance Influence on Vibration of a Belt Device Driven by a Crank Mechanism
,”
Chaos, Solitons Fractals
,
173
, p.
113634
.10.1016/j.chaos.2023.113634
47.
Alabi
,
O.
,
Gupta
,
S. K.
, and
Barry
,
O. R.
,
2023
, “
Vibration Analysis of a Nonlinear Absorber Coupled to a Hand-Held Impact Machine
,”
ASME J. Comput. Nonlinear Dyn.
,
18
(
8
), p.
081006
.10.1115/1.4056803
48.
N'Gbo
,
N.
, and
Tang
,
J.
,
2023
, “
Define the Lyapunov Exponents for ψ-Fractional Differential System
,”
ASME J. Comput. Nonlinear Dyn.
,
18
(
5
), p.
051001
.10.1115/1.4057041
49.
Kartal
,
S.
,
2023
, “
Caputo and Conformable Fractional Order Guava Model for Biological Pest Control: Discretization, Stability and Bifurcation
,”
ASME J. Comput. Nonlinear Dyn.
,
18
(
12
), p.
121002
.10.1115/1.4063555
50.
Wang
,
C.-C.
, and
Lin
,
C.-J.
,
2023
, “
Dynamic Analysis and Machine Learning Prediction of a Nonuniform Slot Air Bearing System
,”
ASME J. Comput. Nonlinear Dyn.
,
18
(
1
), p.
011007
.10.1115/1.4056227
51.
Dudkowski
,
D.
,
Jafari
,
S.
,
Kapitaniak
,
T.
,
Kuznetsov
,
N. V.
,
Leonov
,
G. A.
, and
Prasad
,
A.
,
2016
, “
Hidden Attractors in Dynamical Systems
,”
Phys. Rep.
,
637
, pp.
1
50
.10.1016/j.physrep.2016.05.002
52.
Kuznetsov
,
N. V.
,
Leonov
,
G. A.
, and
Vagaitsev
,
V. I.
,
2010
, “
Analytical-Numerical Method for Attractor Localization of Generalized Chua's System
,”
IFAC Proc. Vol.
,
43
(
11
), pp.
29
33
.10.3182/20100826-3-TR-4016.00009
53.
Skokos
,
C.
,
2009
, “
The Lyapunov Characteristic Exponents and Their Computation
,”
Dynamics of Small Solar System Bodies and Exoplanets
,
Springer
, Berlin, Germany, pp.
63
135
.
54.
Dhamala
,
M.
,
Lai
,
Y.-C.
, and
Kostelich
,
E. J.
,
2001
, “
Analyses of Transient Chaotic Time Series
,”
Phys. Rev. E
,
64
(
5
), p.
056207
.10.1103/PhysRevE.64.056207
55.
Pavlov
,
A. N.
,
Pavlova
,
O. N.
,
Mohammad
,
Y. K.
, and
Kurths
,
J.
,
2015
, “
Characterization of the Chaos-Hyperchaos Transition Based on Return Times
,”
Phys. Rev. E
,
91
(
2
), p.
022921
.10.1103/PhysRevE.91.022921
56.
Mendes
,
E. M.
, and
Nepomuceno
,
E. G.
,
2016
, “
A Very Simple Method to Calculate the (Positive) Largest Lyapunov Exponent Using Interval Extensions
,”
Int. J. Bifurcation Chaos
,
26
(
13
), p.
1650226
.10.1142/S0218127416502266
57.
Froeschlé
,
C.
, and
Lega
,
E.
,
2001
, “
On the Structure of Symplectic Mappings. The Fast Lyapunov Indicator: A Very Sensitive Tool
,”
New Developments in the Dynamics of Planetary Systems: Proceedings of the Fifth Alexander Von Humboldt Colloquium on Celestial Mechanics, Badhofgastein, Austria
, Mar. 19–25, pp.
167
195
.10.1007/978-94-017-2414-2_12
58.
Skokos
,
C.
,
Antonopoulos
,
C.
,
Bountis
,
T. C.
, and
Vrahatis
,
M. N.
,
2003
, “
How Does the Smaller Alignment Index (SALI) Distinguish Order From Chaos?
,”
Prog. Theor. Phys. Suppl.
,
150
, pp.
439
443
.10.1143/PTPS.150.439
59.
Maaita
,
J.
,
Volos
,
C. K.
,
Kyprianidis
,
I.
, and
Stouboulos
,
I.
,
2015
, “
The Dynamics of a Cubic Nonlinear System With No Equilibrium Point
,”
J. Nonlinear Dyn.
,
2015
, pp.
1
13
.10.1155/2015/257923, Wiley Online Library.
You do not currently have access to this content.