Abstract
By introducing linear and constant terms with an undetermined parameter and subsequently using certain rules to determine the optimal value of the parameter, we establish analytical approximate frequencies and the corresponding periodic solutions for strongly mixed-parity nonlinear oscillators. A quadratic–cubic nonlinear oscillator is used to verify and illustrate the usefulness and effectiveness of the proposed method.
1.
Cole
, J. D.
, 1968, Perturbation Methods in Applied Mathematics
, Waltham
, Blaudell.2.
3.
Hagedorn
, P.
, 1988, Nonlinear Oscillations
, Clarendon
, Oxford.4.
Mickens
, R. E.
, 1996, Oscillations in Planar Dynamic Systems
, World Scientific
, Singapore.5.
Cheung
, Y. K.
, Chen
, S. H.
, and Lau
, S. L.
, 1991, “A Modified Lindstedt-Poincaré Method for Certain Strongly Non-linear Oscillators
,” Int. J. Non-Linear Mech.
0020-7462, 26
, pp. 367
–378
.6.
Senator
, M.
, and Bapat
, C. N.
, 1993, “A Perturbation Technique that Works Even when the Non-linearity is Not Small
,” J. Sound Vib.
0022-460X, 164
, pp. 1
–27
.7.
Amore
, P.
, and Aranda
, A.
, 2003, “Presenting a New Method for the Solution of Nonlinear Problems
,” Phys. Lett. A
0375-9601, 316
, pp. 218
–225
.8.
Wu
, B. S.
, Lim
, C. W.
, and Li
, P. S.
, 2005, “A Generalization of the Senator-Bapat Method for Certain Strongly Nonlinear Oscillators
,” Phys. Lett. A
0375-9601, 341
, pp. 164
–169
.9.
Mickens
, R. E.
, 1981, “A uniformly valid perturbation solution of ü+u=A+εu2
,” J. Sound Vib.
0022-460X, 76
, pp. 150
–153
.10.
Mickens
, R. E.
, 1993, “Construction of a Perturbation Solution to a Mixed Parity System that Satisfies the Correct Initial Conditions
,” J. Sound Vib.
0022-460X, 167
, pp. 564
–567
.11.
Stevenson
, P. M.
, 1981, “Optimized Perturbation Theory
,” Phys. Rev. D
0556-2821, 23
, pp. 2916
–2944
.12.
Amore
, P.
, and Saenz
, R. A.
, 2005, “The Period of a Classical Oscillator
,” Europhys. Lett.
0295-5075, 70
, pp. 425
–431
.Copyright © 2007
by American Society of Mechanical Engineers
You do not currently have access to this content.