Abstract

By introducing linear and constant terms with an undetermined parameter and subsequently using certain rules to determine the optimal value of the parameter, we establish analytical approximate frequencies and the corresponding periodic solutions for strongly mixed-parity nonlinear oscillators. A quadratic–cubic nonlinear oscillator is used to verify and illustrate the usefulness and effectiveness of the proposed method.

1.
Cole
,
J. D.
, 1968,
Perturbation Methods in Applied Mathematics
,
Waltham
, Blaudell.
2.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
, 1979,
Nonlinear Oscillations
,
Wiley
, New York.
3.
Hagedorn
,
P.
, 1988,
Nonlinear Oscillations
,
Clarendon
, Oxford.
4.
Mickens
,
R. E.
, 1996,
Oscillations in Planar Dynamic Systems
,
World Scientific
, Singapore.
5.
Cheung
,
Y. K.
,
Chen
,
S. H.
, and
Lau
,
S. L.
, 1991, “
A Modified Lindstedt-Poincaré Method for Certain Strongly Non-linear Oscillators
,”
Int. J. Non-Linear Mech.
0020-7462,
26
, pp.
367
378
.
6.
Senator
,
M.
, and
Bapat
,
C. N.
, 1993, “
A Perturbation Technique that Works Even when the Non-linearity is Not Small
,”
J. Sound Vib.
0022-460X,
164
, pp.
1
27
.
7.
Amore
,
P.
, and
Aranda
,
A.
, 2003, “
Presenting a New Method for the Solution of Nonlinear Problems
,”
Phys. Lett. A
0375-9601,
316
, pp.
218
225
.
8.
Wu
,
B. S.
,
Lim
,
C. W.
, and
Li
,
P. S.
, 2005, “
A Generalization of the Senator-Bapat Method for Certain Strongly Nonlinear Oscillators
,”
Phys. Lett. A
0375-9601,
341
, pp.
164
169
.
9.
Mickens
,
R. E.
, 1981, “
A uniformly valid perturbation solution of ü+u=A+εu2
,”
J. Sound Vib.
0022-460X,
76
, pp.
150
153
.
10.
Mickens
,
R. E.
, 1993, “
Construction of a Perturbation Solution to a Mixed Parity System that Satisfies the Correct Initial Conditions
,”
J. Sound Vib.
0022-460X,
167
, pp.
564
567
.
11.
Stevenson
,
P. M.
, 1981, “
Optimized Perturbation Theory
,”
Phys. Rev. D
0556-2821,
23
, pp.
2916
2944
.
12.
Amore
,
P.
, and
Saenz
,
R. A.
, 2005, “
The Period of a Classical Oscillator
,”
Europhys. Lett.
0295-5075,
70
, pp.
425
431
.
You do not currently have access to this content.