Abstract

In this paper, we introduce a numerical technique for solving Bagley–Torvik equations which plays an outstanding role in fractional calculus. To handle the derivatives and fractional integral in the Bagley–Torvik equations, the Laplace transform is employed to convert the equations to fractional integration equations. The resulting integral equations are solved by implicit Adams–Moulton methods. Moreover, we show the analytic convergence order of the proposed technique through the convergence analysis, and the analysis is validated by the numerical experiments. Illustrative experiments also demonstrate the validity and efficiency of the proposed method by comparing it with other existing methods.

References

1.
Akgül
,
A.
,
Ülgül
,
E.
,
Sakar
,
N.
,
Bilgi
,
B.
, and
Eker
,
A.
,
2023
, “
New Applications of the New General Integral Transform Method With Different Fractional Derivatives
,”
Alex. Eng. J.
,
80
, pp.
498
505
.10.1016/j.aej.2023.08.064
2.
Bu
,
S.
,
2021
, “
A Collocation Method Based on the Quadratic Quadrature Technique for Fractional Differential Equations
,”
AIMS Math.
,
7
(
1
), pp.
804
820
.10.3934/math.2022048
3.
Bu
,
S.
, and
Jeon
,
Y.
, “
Higher Order Predictor-Corrector Methods With an Enhanced Predictor for Fractional Differential Equations
,” (submitted).
4.
Deng
,
W.
,
Du
,
S.
, and
Wu
,
Y.
,
2012
, “
High Order Finite Difference WENO Schemes for Fractional Differential Equations
,”
Appl. Math. Lett.
,
26
(
3
), pp.
362
366
.10.1016/j.aml.2012.10.005
5.
Diethelm
,
K.
,
2003
, “
Efficient Solution of Multi-Term Fractional Differential Equations Using P(EC)mE Methods
,”
Computing
,
71
(
4
), pp.
305
319
.10.1007/s00607-003-0033-3
6.
Diethelm
,
K.
,
Ford
,
N. J.
, and
Freed
,
A. D.
,
2002
, “
A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations
,”
Nonlinear Dyn.
,
29
(
1/4
), pp.
3
22
.10.1023/A:1016592219341
7.
Farman
,
M.
,
Shehzad
,
A.
,
Akgül
,
A.
,
Baleanu
,
D.
,
Attia
,
N.
, and
Hassan
,
A. M.
,
2023
, “
Analysis of a Fractional Order Bovine Brucellosis Disease Model With Discrete Generalized Mittag–Leffler Kernels
,”
Results Phys.
,
52
, p.
106887
.10.1016/j.rinp.2023.106887
8.
Jung
,
S. M.
,
2012
, “
Approximation of Analytic Functions by Bessel's Functions of Fractional Order
,”
Ukr. Math. J.
,
63
(
12
), pp.
1933
1944
.10.1007/s11253-012-0622-4
9.
Podlubny
,
I.
,
1997
, “
Numerical Solution of Ordinary Fractional Differential Equations by the Fractional Difference Method
,”
Proceedings of the Second International Conference in Differential Equation
, Gordon and Berach, UK.
10.
Qayyum
,
M.
,
Tahir
,
A.
,
Saeed
,
S. T.
, and
Akgül
,
A.
,
2023
, “
Series-Form Solutions of Generalized Fractional-Fisher Models With Uncertainties Using Hybrid Approach in Caputo Sense
,”
Chaos Solitons Fractals
,
172
, p.
113502
.10.1016/j.chaos.2023.113502
11.
Rehman
,
M.
,
Idrees
,
A.
, and
Saeed
,
U.
,
2017
, “
A Quadrature Method for Numerical Solutions of Fractional Differential Equations
,”
Appl. Math. Comput.
,
307
(
C
), pp.
38
49
.10.1016/j.amc.2017.02.053
12.
Yan
,
Y.
,
Pal
,
K.
, and
Ford
,
N.
,
2014
, “
Higher Order Numerical Methods for Solving Fractional Differential Equations
,”
BIT Numer. Math.
,
54
(
2
), pp.
555
584
.10.1007/s10543-013-0443-3
13.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1984
, “
On the Appearance of the Fractional Derivative in the Behavior of Real Materials
,”
ASME J. Appl. Mech.
,
51
(
2
), pp.
294
298
.10.1115/1.3167615
14.
Yadav
,
P.
,
Jahan
,
S.
, and
Nisar
,
K. S.
,
2024
, “
Solving Fractional Bagley-Torvik Equation by Fractional Order Fibonacci Wavelet Arising in Fluid Mechanics
,”
AIN Shams Eng. J.
,
15
(
1
), p.
102299
.10.1016/j.asej.2023.102299
15.
Zafar
,
A. A.
,
Kudra
,
G.
, and
Awrejcewicz
,
J.
,
2019
, “
An Investigation of Fractional Bagley-Torvik Equation
,”
Entropy (Basel)
,
22
(
1
), p.
28
.10.3390/e22010028
16.
Atanackovic
,
T. M.
, and
Zorica
,
D.
,
2013
, “
On the Bagely–Torvik Equation
,”
ASME J. Appl. Mech.
,
80
, p.
041013
.10.1115/1.4007850
17.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
San Diego, CA
.
18.
Jena
,
R. M.
, and
Chakraverty
,
S.
,
2019
, “
Analytical Solution of Bagley–Torvik Equations Using Sumudu Transformation Method
,”
SN Appl. Sci.
,
1
(
3
), p.
246
.10.1007/s42452-019-0259-0
19.
Ray
,
S. S.
, and
Bera
,
R. K.
,
2005
, “
Analytical Solution of the Bagley–Torvik Equation by Adomian Decomposition Method
,”
Appl. Math. Comput.
,
168
(
1
), pp.
398
410
.10.1016/j.amc.2004.09.006
20.
Çenesiz
,
Y.
,
Keskin
,
Y.
, and
Kurnaz
,
A.
,
2010
, “
The Solution of the Bagley–Torvik Equation With the Generalized Taylor Collocation Method
,”
J. Franklin Inst.
,
347
(
2
), pp.
452
466
.10.1016/j.jfranklin.2009.10.007
21.
Sakar
,
M. G.
,
Sald Ir
,
O.
, and
Akgül
,
A.
,
2018
, “
A Novel Technique for Fractional Bagley–Torvik Equation
,”
Proc. Nat. Acad. Sci. India A
,
89
(
3
), pp.
539
545
.10.1007/s40010-018-0488-4
22.
Li
,
Y.
, and
Zhao
,
W.
,
2010
, “
Haar Wavelet Operational Matrix of Fractional Order Integration and Its Applications in Solving the Fractional Order Differential Equations
,”
Appl. Math. Comput.
,
216
(
8
), pp.
2276
2285
.10.1016/j.amc.2010.03.063
23.
Ray
,
S. S.
,
2012
, “
On Haar Wavelet Operational Matrix of General Order and Its Application for the Numerical Solution of Fractional Bagley–Torvik Equation
,”
Appl. Math. Comput.
,
218
(
9
), pp.
5239
5248
.10.1016/j.amc.2011.11.007
24.
Diethelm
,
K.
, and
Ford
,
J.
,
2002
, “
Numerical Solution of the Bagley-Torvik Equation
,”
BIT Numer. Math.
,
42
(
3
), pp.
490
507
.10.1023/A:1021973025166
25.
Bhrawy
,
A. H.
, and
Alofi
,
A. S.
,
2013
, “
The Operational Matrix of Fractional Integration for Shifted Chebyshev Polynomials
,”
Appl. Math. Lett.
,
26
(
1
), pp.
25
31
.10.1016/j.aml.2012.01.027
26.
Mashayekhi
,
S.
, and
Razzaghi
,
M.
,
2016
, “
Numerical Solution of the Fractional Bagley–Torvik Equation by Using Hybrid Functions Approximation
,”
Math. Meth. Appl. Sci.
,
39
(
3
), pp.
353
365
.10.1002/mma.3486
27.
Mokhtary
,
P.
,
2016
, “
Numerical Treatment of a Well-Posed Chebyshev Tau Method for Bagley–Torvik Equation With High-Order of Accuracy
,”
Numer. Algor.
,
72
(
4
), pp.
875
891
.10.1007/s11075-015-0072-9
28.
Jena
,
R. M.
,
Chakraverty
,
S.
,
Edeki
,
S. O.
, and
Ofuyatan
,
O. M.
,
2020
, “
Shifted Legendre Polynomial Based Galerkin and Collocation Methods for Solving Fractional Order Delay Differential Equations
,”
J. Theor. Appl. Inf. Technol.
,
98
(
4
), pp.
535
547
.https://www.researchgate.net/publication/339599548_Shifted_Legendre_polynomial_based_galerkin_and_collocation_methods_for_solving_fractional_order_delay_differential_equations
29.
Ji
,
T.
, and
Hou
,
J.
,
2020
, “
Numerical Solution of the Bagley–Torvik Equation Using Laguerre Polynomials
,”
SeMA J.
,
77
(
1
), pp.
97
106
.10.1007/s40324-019-00204-y
30.
Diethelm
,
K.
,
Ford
,
N. J.
, and
Freed
,
A. D.
,
2004
, “
Detailed Error Analysis for a Fractional Adams Method
,”
Numer. Algor.
,
36
(
1
), pp.
31
52
.10.1023/B:NUMA.0000027736.85078.be
31.
Doha
,
E. H.
,
Bhrawy
,
A. H.
, and
Ezz-Eldien
,
S. S.
,
2011
, “
Efficient Chebyshev Spectral Method for Solving Multi-Term Fractional Orders Differential Equations
,”
Appl. Math. Model.
,
35
(
12
), pp.
5662
5672
.10.1016/j.apm.2011.05.011
32.
Emadifar
,
H.
, and
Jalilian
,
R.
,
2020
, “
An Exponential Spline Approximation for Fractional Bagley-Torvik Equation
,”
Bound. Value Probl.
,
2020
, p.
20
.10.1186/s13661-020-01327-2
33.
Momani
,
S.
, and
Odibat
,
Z.
,
2007
, “
Numerical Comparison of Methods for Solving Linear Differential Equations of Fractional Order
,”
Chaos Solitons Fractals
,
31
(
5
), pp.
1248
1255
.10.1016/j.chaos.2005.10.068
34.
Youssri
,
Y.
,
2017
, “
A New Operational Matrix of Caputo Fractional Derivatives of Fermat Polynomials: An Application for Solving the Bagley-Torvik Equation
,”
Adv. Diff. Eqn.
,
2017
, p. 73.10.1186/s13662-017-1123-4
You do not currently have access to this content.