Abstract

The crack failure is prone to happen for the gear teeth under alternating loads. The crack reduces the time-varying meshing stiffness, thus causing changes in the system vibration responses. Moreover, the tooth friction leads to the flash temperature on the tooth surface, and the flash temperature causes the deformation of the tooth profile. The flash temperature stiffness generated by this deformation is an important component of the resultant meshing stiffness, and inevitably influences the dynamic characteristics. Hence, this paper makes an effort to provide a clear understanding of the relationship between the tooth crack and nonlinear dynamics for a multistage gear transmission system considering the flash temperature in a mixed friction state. The time-varying meshing stiffness and flash temperature stiffness are separately calculated using the potential energy method and Hertz's theory, and the torsional dynamic model is established by the lumped mass method for the system with high-speed driving gear crack in the mixed friction state. The influences of the flash temperature and crack on the dynamic behaviors are studied through a bifurcation diagram, frequency spectrum, phase portrait, and Poincare map, and the frequency spectra of numerical simulation and experimental testing are compared. The results indicate that both flash temperature and tooth crack decrease the time-varying meshing stiffness, the flash temperature increases the displacement amplitude of chaotic motion, and the tooth crack enlarges the interval of chaotic motion. Meanwhile, the results provide a suitable meshing frequency, which puts the system in a stable working state. The research provides significant guidance for monitoring the crack fault of multistage gear transmission systems.

References

1.
Kong
,
Y. Y.
,
Jiang
,
H.
,
Dong
,
N.
,
Shang
,
J.
,
Yu
,
P. F.
,
Li
,
J.
,
Yu
,
M. H.
, and
Chen
,
L.
,
2023
, “
Analysis of Time-Varying Mesh Stiffness and Dynamic Response of Gear Transmission System With Pitting and Cracking Coupling Faults
,”
Machines
,
11
(
4
), p.
500
.10.3390/machines11040500
2.
Shi
,
J. F.
,
Gou
,
X. F.
, and
Zhu
,
L. Y.
,
2022
, “
Five-State Engaging Model and Dynamics of Gear-Rotor-Bearing System Based on Time-Varying Contact Analysis Considering Gear Temperature and Lubrication
,”
Appl. Math. Modell.
,
112
, pp.
47
77
.10.1016/j.apm.2022.07.028
3.
Meng
,
Z.
,
Shi
,
G. X.
,
Wang
,
F. L.
,
Y Zhan
,
X.
, and
Fan
,
F. J.
,
2020
, “
Vibration Characteristic Analysis of Cracked Gear Based on Time-Varying Meshing Stiffness
,”
J. Mech. Eng.
,
56
(
17
), pp.
108
115
.10.3901/JME.2020.17.108
4.
Liu
,
J.
,
Sun
,
Y. F.
, and
Li
,
H. Y.
,
2021
, “
Analysis of Meshing Stiffness and Vibration Response of Tooth With Root Crack in Different Depth
,”
J. Vib., Meas. Diagn.
,
41
(
2
), pp.
275
282
.10.16450/j.cnki.issn.1004-6801.2021.02.010
5.
Wang
,
S. Y.
,
Zhu
,
R. P.
, and
Xiao
,
Z. M.
,
2022
, “
Investigation on Crack Failure of Helical Gear System of the Gearbox in Wind Turbine: Mesh Stiffness Calculation and Vibration Characteristics Recognition
,”
Ocean Eng.
,
250
, p.
110972
.10.1016/j.oceaneng.2022.110972
6.
Ren
,
F.
,
Wang
,
D. X.
,
Shi
,
G. Q.
, and
Wu
,
X. L.
,
2022
, “
Investigation on Dynamic Characteristics of Spur Gear Transmission System With Crack Fault
,”
Machines
,
10
(
8
), p.
664
.10.3390/machines10080664
7.
Qiao
,
Z. Z.
,
Chen
,
K. K.
,
Zhou
,
C. J.
, and
Ma
,
H.
,
2023
, “
An Improved Fault Model of Wind Turbine Gear Drive Under Multi-Stage Cracks
,”
Simul. Modell. Pract. Theory
,
122
, p.
102679
.10.1016/j.simpat.2022.102679
8.
Wan
,
Z. G.
,
He
,
W. P.
,
Liao
,
N. N.
,
Dou
,
Y. H.
, and
Guo
,
B. L.
,
2021
, “
Study on the Vibration Response Mechanism of Gear Root Crack and Spalling
,”
J. Xidian Univ.
,
48
(
6
), pp.
131
137
.10.19665/j.issn1001-2400.2021.06.016
9.
Shen
,
Y.
,
Zhang
,
X. F.
,
Zhou
,
J. X.
,
Jiang
,
H.
,
Wang
,
C. L.
,
Qiao
,
S.
, and
Ma
,
T. W.
,
2022
, “
Multi-Stage Gear Transmission Frequency Analysis and Feature Extraction Under Crack Action
,”
J. Vib., Meas. Diagn.
,
42
(
2
), pp.
328
334
.10.16450/j.cnki.issn.1004-6801.2022.02.018
10.
Xie
,
F. Q.
,
Wu
,
S. J.
,
Li
,
X. Y.
, and
Wang
,
X. S.
,
2022
, “
Dynamic Characteristics Research of Wind Power Planetary Gear Transmission System With Tooth Cracks
,”
Comput. Integr. Manuf. Syst.
,
28
(
8
), pp.
2343
2352
.10.13196/j.cims.2022.08.006
11.
Kong
,
Y. Y.
,
Zhang
,
X. F.
,
Jiang
,
H.
,
Zhou
,
J. X.
,
Dong
,
N.
,
Shang
,
J.
,
Wang
,
C.
, and
Sun
,
X. Y.
,
2023
, “
Dynamic Characteristics Analysis of Gear Transmission System Considering Crack and Wear Fault
,”
J. Xi'an Jiaotong Univ.
,
57
(
3
), pp.
150
159
.10.7652/xjtuxb202303014
12.
Xiang
,
L.
,
An
,
C. H.
, and
Hu
,
A. J.
,
2021
, “
Nonlinear Dynamic Characteristics of Wind Turbine Gear System Caused by Tooth Crack Fault
,”
Int. J. Bifurcation Chaos
,
31
(
10
), p.
2150148
.10.1142/S0218127421501480
13.
Xu
,
J. C.
,
Li
,
X. P.
,
Chen
,
R. Z.
,
Wang
,
L. L.
,
Yang
,
Z. M.
, and
Yang
,
H. X.
,
2021
, “
Dynamic Characteristics Analysis of Gear-Bearing System Considering Dynamic Wear With Flash Temperature
,”
Mathematics
,
9
(
21
), p.
2739
.10.3390/math9212739
14.
Sun
,
Z.
,
Chen
,
S. Y.
,
Tao
,
X.
, and
Hu
,
Z. H.
,
2021
, “
Research on Dynamic Characteristics of Gear System Considering the Influence of Temperature on Material Performance
,”
J. Vib. Control
,
28
(
13–14
), pp.
1792
1803
.10.1177/10775463211002616
15.
Pan
,
W. J.
,
Li
,
X. P.
,
Wang
,
L. L.
, and
Yang
,
Z. M.
,
2019
, “
Nonlinear Response Analysis of Gear-Shaft-Bearing System Considering Tooth Contact Temperature and Random Excitations
,”
Appl. Math. Modell.
,
68
, pp.
113
136
.10.1016/j.apm.2018.10.022
16.
Liu
,
H.
,
Yan
,
P. F.
, and
Gao
,
P.
,
2020
, “
Effects of Temperature on the Time-Varying Mesh Stiffness, Vibration Response, and Support Force of a Multi-Stage Planetary Gear
,”
ASME J. Vib. Acoust.
,
142
(
5
), p.
051110
.10.1115/1.4047246
17.
Zhang
,
X.
,
Zhong
,
J. X.
,
Li
,
W.
, and
Bocian
,
M.
,
2022
, “
Nonlinear Dynamic Analysis of High-Speed Gear Pair With Wear Fault and Tooth Contact Temperature for a Wind Turbine Gearbox
,”
Mech. Mach. Theory
,
173
, p.
104840
.10.1016/j.mechmachtheory.2022.104840
18.
Lu
,
R. X.
, and
Tang
,
W. C.
,
2022
, “
Analytical Calculation Models for Mesh Stiffness and Backlash of Spur Gears Under Temperature Effects
,”
Proc. Inst. Mech. Eng., Part C
,
236
(
8
), pp.
4450
4462
.10.1177/09544062211049860
19.
Wang
,
X.
,
2018
, “
Stability Research of Multistage Gear Transmission System With Crack Fault
,”
J. Sound Vib.
,
434
, pp.
63
77
.10.1016/j.jsv.2018.07.037
20.
Sainsot and
,
P.
,
Velex
,
P.
, and
Duverger
,
O.
,
2004
, “
Contribution of Gear Body to Tooth Deflections - a New Bidimensional Analysis Formula
,”
ASME J. Mech. Des.
,
126
(
4
), pp.
748
752
.10.1115/1.1758252
21.
Liang
,
X. H.
,
Zuo
,
M. J.
, and
Pandey
,
M.
,
2014
, “
Analytically Evaluating the Influence of Crack on the Mesh Stiffness of a Planetary Gear Set
,”
Mech. Mach. Theory
,
76
, pp.
20
38
.10.1016/j.mechmachtheory.2014.02.001
22.
He
,
S.
,
Cho
,
S. M.
, and
Singh
,
R.
,
2008
, “
Prediction of Dynamic Friction Forces in Spur Gears Using Alternate Sliding Friction Formulations
,”
J. Sound Vib.
,
309
(
3–5
), pp.
843
851
.10.1016/j.jsv.2007.06.077
23.
Shi
,
J. F.
,
Gou
,
X. F.
,
Zhu
,
L. Y.
, and
Qi
,
C. J.
,
2018
, “
Nonlinear Dynamic Modeling of 3-DOF Gear System With Tooth Contact Temperature
,” Proceedings of the 2017 International Conference on Mechanical Design (
ICMD2017
),
Beijing, China, Oct. 13–15
, pp.
213
226
.10.1007/978-981-10-6553-8_14
24.
Gou
,
X. F.
,
Zhu
,
L. Y.
, and
Qi
,
C. J.
,
2017
, “
Nonlinear Dynamic Model of a Gear-Rotor-Bearing System Considering the Flash Temperature
,”
J. Sound Vib.
,
410
, pp.
187
208
.10.1016/j.jsv.2017.08.014
25.
Xie
,
F. Q.
,
Sun
,
Y. Y.
,
Wu
,
S. J.
,
Zhang
,
Q.
, and
Li
,
X. Y.
,
2022
, “
Research on Load Sharing Performance of Wind Turbine Gearbox Involving Multiple-Errors and Tooth Crack
,”
J. Mech. Sci. Technol.
,
36
(
9
), pp.
4395
4408
.10.1007/s12206-022-0804-4
26.
Chen
,
L.
,
Zhang
,
X. F.
, and
Wang
,
L. Z.
,
2022
, “
Research on Root Strain Response Characteristics of Inner Ring of Planetary Gear Transmission System With Crack Fault
,”
Sensors
,
23
(
1
), p.
253
.10.3390/s23010253
27.
Xiao
,
Z. M.
,
Chen
,
F.
, and
Zhang
,
K. L.
,
2021
, “
Analysis of Dynamic Characteristics of the Multistage Planetary Gear Transmission System With Friction Force
,”
Shock Vib.
,
2021
(
1
), pp.
1
10
.10.1155/2021/8812640
28.
Zwarycz-Makles
,
K.
, and
Majorkowska-Mech
,
D.
,
2018
, “
Gear and Runge–Kutta Numerical Discretization Methods in Differential Equations of Adsorption in Adsorption Heat Pump
,”
Appl. Sci.
,
8
(
12
), p.
2437
.10.3390/app8122437
29.
Wang
,
J. Y.
,
Liu
,
N.
,
Wang
,
H. T.
, and
Guo
,
L. X.
,
2022
, “
Research on Bifurcation and Chaos Characteristics of Planet Gear Transmission System With Mixed Elastohydrodynamic Lubrication (EHL) Friction
,”
Int. J. Nonlinear Sci. Numer. Simul.
,
23
(
1
), pp.
1
14
.10.1515/ijnsns-2019-0065
You do not currently have access to this content.